Hamiltonian Laceability in Middle Graph of Cubic Graph $(Gc)_{2n}$ and $(W_{1,\,n},k)$ Graphs

Manjunath.G¹ and Murali.R²

¹Research scholar, Dr. Ambedkar Institute of Technology, Bangalore

²Department of Mathematics, Dr.Ambedkar Institute of Technology, Bangalore

ABSTRACT

A simple connected graph G is Hamiltonian laceable if there exists a Hamiltonian path between every pair of distinct vertices at an odd distance in it. G is Hamiltonian-t-laceable(t *-laceable) if there exists a Hamiltonian path in G between every pair (at least one pair) of vertices u and v in G with the property $d(u,v) = t, 1 \le t \le diamG$. In this paper we explore the Hamiltonian laceability properties of the Middle graph of the Cubic Graph (Gc)_{2n} and the ($W_{1,n}, k$) graph for k = 1.

Keyword: Connected graph, Middle graph, Hamiltonian-t-laceable graph, Hamiltonian-t*-laceable graph, t-laceability number.

1. Introduction

All graphs considered in this paper are finite, simple, connected and undirected. Let u and v be two vertices in a graph G. The distance between u and v denoted by d(u, v) is the length of a shortest u - v path in G. G is a Hamiltonian-t-laceable if there exists in it a Hamiltonian path between every pair of vertices u and v with the property d(u, v) = t, $1 \le t \le diamG$, where t is a positive integer. If this property is achieved for at least one pair of vertices u and v, the graph G is termed Hamiltonian- t^* -laceable for all t such that d(u, v) = t, $1 \le t \le diamG$ then G is called a t^* -connected graph. Various results on Hamiltonian laceability properties in graphs are available in [4], [7], [8], [9], [10], [11] and [13]. In [12] the authors have discussed laceability properties of the Middle graph of the Gear graph G_n , the Fan graph $F_{1,n}$, the Wheel graph $W_{1,n}$, the Path graph P_n and the Cycle C_n . In this paper we explore the Laceability properties of the Middle graph of the Cubic graph $(Gc)_{2n}$ and $(W_{1,n}, k)$ graphs for k = 1.

Definition 1

The Middle graph of G denoted by M(G) is defined as follows.

The vertex set of M(G) is $V(G) \cup E(G)$. Two vertices x, y in the vertex set of M(G) are adjacent in M(G) in case one of the following holds:

- i) x, y are in E(G) and x, y are in adjacent in G.
- ii) x is in V(G), y is in E(G) and x, y are incident in G.

Figure 1 below illustrates the Middle graph of a cubic graph G.

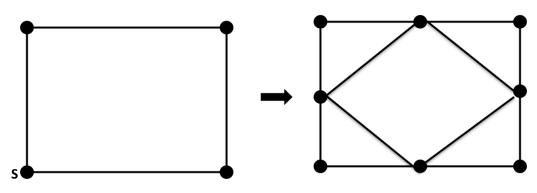


Fig1: A Graph and its Middle Graph

Definition 2

The graph $\left(Gc\right)_{2n}$ (which is a Cubic graph) is obtained by replacing the central vertex of Wheel $W_{1,n}$ by a cycle of length n.

Figure 2, below illustrates the Wheel graph $W_{\!_{1,8}}$ and Cubic Graph $G_{\!_{16}}$.

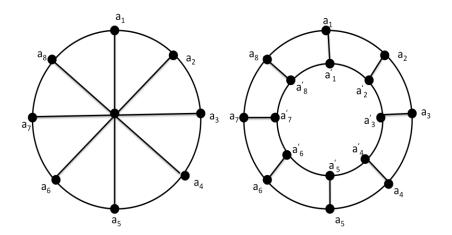


Fig2: The Wheel graph $W_{\!_{1,8}}$ and the corresponding Cubic Graph $(Gc)_{\!_{16}}$

Definition 3

Consider the Wheel graph $W_{1,n}$. The graph $(W_{1,n}, k)$ is obtained from $W_{1,n}$ as follows.

Denote the vertices of $W_{1,n}$ by a_i , $1 \le i \le n$ and the central vertex as a_0 . $(W_{1,n}, k)$ is obtained by taking the disjoint union of k copies of cycle C_k with the vertices $a_{k_1}, a_{k_2}, \dots, a_{k_{(n-1)}}, a_{k_n}$. The edges of $(W_{1,n}, k)$ are obtained as follows:

- (i) If k = 1, for $1 \le i \le n$, draw an edge connecting vertices a_i of $W_{1,n}$ to a_1
- (ii) If $k \ge 2$, starting from k = 2 proceed recursively by joining the vertices $a_{(k-1)}$ to a_{k_1} by an edge for $1 \le i \le n$.

Figure 3 below illustrates the $(W_{1,6}, 2)$ graph.

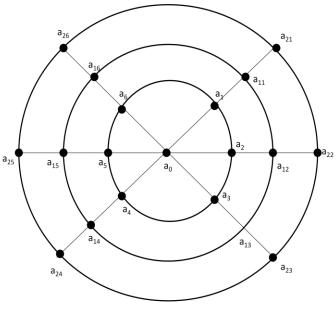


Fig3: The Graph $(W_{1,6},2)$

Definition 4

Let P be a path from the vertices $a_i \text{ to } a_j$ in a graph G and let P' be a path from $a_i \text{ to } a_k$. Then the path $P \cup P'$ is the path obtained by extending the path P from $a_i \text{ to } a_j$ to $a_i \text{ to } a_k$ through the common vertex a_j (i.e., if $P: a_i \dots a_j$ and $P': a_j \dots a_k$, then $P \cup P': a_i \dots a_j \dots a_k$). In [14], Girisha obtained the following results.

Theorem 1: The Graph $(Gc)_{2n}$ is Hamiltonian-t*-laceable for odd $n \ge 3$, where $1 \le t \le 4$. **Theorem 2:** The Graph $(Gc)_{2n}$ is Hamiltonian-t*-laceable for even $n \ge 4$, where $2 \le t \le 4$. **Theorem 3:** The Graph $G = (W_{1,n}, k), n \ge 3, k \ge 1$ is Hamiltonian- t^* -laceable for $1 \le t \le 3$.

We now prove the following results.

2. Results

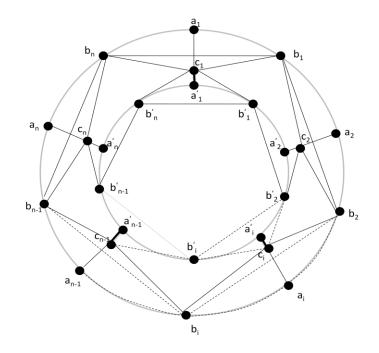
Theorem 4: The Graph $G = M(Gc)_{2n}$ is Hamiltonian- t^* -laceable for t = 1, 2 and 3 if n is odd, $n \ge 5$.

Proof: Let $V((Gc)_{2n}) = \{a_1, a_2, ..., a_n\} \cup \{a_1', a_2', ..., a_n'\}$ and

 $E((Gc)_{2n}) = \{b_i : 1 \le i \le n\} \cup \{c_i : 1 \le i \le n-1\} \cup \{c_n\} \cup \{b'_i : 1 \le i \le n\} \text{ where } b_i \text{ is the edge } a_i a_{i+1}, c_i \text{ is the edge } a_i a'_i, c_n \text{ is the edge } a_n a'_n \text{ and } b'_i \text{ is the edge } a_n a'_{n-1}. \text{ By the definition of Middle graph,} V(M((Gc)_{2n})) = V((Gc)_{2n})) \cup E((Gc)_{2n})) = \{a_i : 1 \le i \le n\} \cup \{a'_i : 1 \le i \le n\} \cup \{b_i : 1 \le i \le n\} \cup$

 $\{c_i : 1 \le i \le n\} \cup \{b'_i : 1 \le i \le n\}.$

We have the following cases.



A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering <u>http://www.ijmr.net.in</u> email id- irjmss@gmail.com Page 136 Fig 4: The Middle graph $M((Gc)_{10})$

Case (i): t = 1

In G, $d(a_1, b_1) = 1$ and the path

 $P:(a_1,b_n) \cup (b_n,a_n) \cup (a_n,b_{n-1}) \cup (b_{n-1},a_{n-1}) \cup (a_{n-1},b_{n-2}) \cup \dots \cup (b_3,a_3) \cup (a_3,b_2) \cup \dots \cup (b_n,a_n) \cup (a_n,b_n) \cup (a_n,b_n)$ $(b_2, a_2) \cup (a_2, c_2) \cup (c_2, b_1') \cup (b_1', a_2') \cup \dots \cup (c_3, b_3') \cup \dots \cup (c_3, b_3') \cup \dots \cup (a_{(n-3)}', c_{(n-3)}) \cup (a_{(n-3)}', a_{(n-3)}') \cup (a_{(n$ $(c_{(n-3)},b_{(n-3)}') \cup (b_{(n-3)}',a_{(n-2)}') \cup \dots \cup \dots \cup (a_{(n-1)}',c_{(n-1)}) \cup (c_{(n-1)},b_{(n-1)}') \cup (b_{(n-1)}',a_{n}') \cup (a_{n}',c_{n}) \cup (a_{n}',c$ $(c_n, b'_n) \cup (b'_n, a'_1) \cup (a'_1, c_1) \cup (c_1, b_1)$ is a Hamiltonian path between the vertices a_1 and b_1 . Hence G is Hamiltonian-1*-laceable.

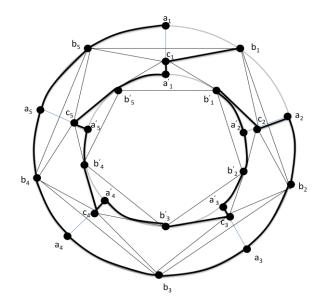


Fig 5: Hamiltonian path from the vertex a_1 to b_1 in the Middle graph $M((Gc)_{10})$

Case (ii): t = 2

In G, $d(a_1, a_2) = 2$ and the path,

 $P:(a_1,b_n) \cup (b_n,a_n) \cup (a_n,b_{n-1}) \cup (b_{n-1},a_{n-1}) \cup (a_{n-1},b_{n-2}) \cup \dots \cup (b_3,a_3) \cup (a_3,b_2) \cup \dots \cup (b_n,a_n) \cup (a_n,b_{n-1}) \cup (a_n,b_{n (b_2,c_2) \cup (c_2,b_1') \cup (b_1',a_2') \cup \dots \cup (c_3,b_3') \cup \dots \cup \dots \cup (a_{(n-3)}',c_{(n-3)}) \cup c_{(n-3)},b_{(n-3)}') \cup (c_{(n-3)},b_{(n-3)}') \cup (c_{(n$ $(b'_{(n-3)}, a'_{(n-2)}) \cup \dots \cup (a'_{(n-1)}, c_{(n-1)}) \cup (c_{(n-1)}, b'_{(n-1)}) \cup (b'_{(n-1)}, a'_{n}) \cup (a'_{n}, c_{n}) \cup (c_{n}, b'_{n}) \cup (c_{(n-1)}, a'_{(n-1)}) \cup (c'_{(n-1)}, a'_{(n-1)}) \cup (c'_{(n-1)},$ $(b'_n, a'_1) \cup (a'_1, c_1) \cup (c_1, b_1) \cup (b_1, a_2)$ is a Hamiltonian path between the vertices a_1 and a_2 . Hence G is Hamiltonian-2*-laceable.

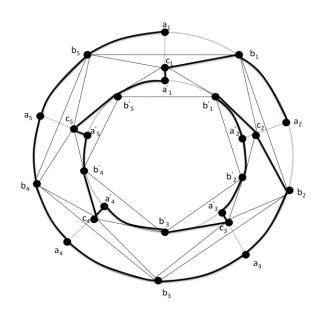


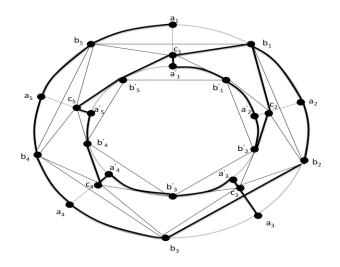
Fig 6: Hamiltonian path from the vertex a_1 to a_2 in the Middle graph $M((Gc)_{10})$

In G, $d(a_1, a_3) = 3$ and the path

$$\begin{split} P: (a_1, b_n) \cup (b_n, a_n) \cup (a_n, b_{n-1}) \cup (b_{n-1}, a_{n-1}) \cup (a_{n-1}, b_{n-2}) \cup \dots \cup (b_5, a_5) \cup (a_5, b_4) \cup \\ (b_3, a_3) \cup (b_4, a_4) \cup (a_4, b_3) \cup (b_3, b_2) \cup (b_2, a_2) \cup (a_2, b_1) \cup (b_1, c_2) \cup (c_2, b_2') \cup (b_2', a_2') \cup \\ (a_2', b_1') \cup (b_1', a_1') \cup (a_1', c_1) \cup (c_1, b_n') \cup (b_n', c_n) \cup (c_n, a_n') \cup (a_n', b_{n-1}') \cup (b_{n-1}', c_{n-1}) \cup (c_{n-1}, a_{n-1}') \cup \\ (a_{n-1}', b_{n-2}') \cup (b_{n-2}', c_{n-2}) \cup (c_{n-2}, a_{n-2}') \cup (a_{n-2}', b_{n-3}') \cup (b_{n-3}', c_{n-3}) \cup \dots \cup \\ (b_5', c_5) \cup \\ (c_5, a_5') \cup (a_5', b_4') \cup (b_4', c_4) \cup (c_4, a_4') \cup (a_4', b_3') \cup (b_3', a_3') \cup (a_3', c_3) \cup (c_3, a_3) \\ \end{split}$$

path between the vertices a_1 and a_3 . Hence G is Hamiltonian-3*-laceable.

Hence the proof.



A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering http://www.ijmr.net.in email id- irjmss@gmail.com

Fig 7: Hamiltonian path from the vertex a_1 to a_3 in the Middle graph $M((Gc)_{10})$

3. Remark

For n=3, the diameter of G is 2. In this case G is t*-connected. This is proved below.

Theorem 5: The Graph $G = M((Gc)_{2n})$ is t*-connected.

Proof: We have the following two cases.

Case (i): t = 1

In G, $d(a_1, b_1) = 1$, and the path,

 $P:(a_1,b_3) \cup (b_3,a_3) \cup (a_3,b_2) \cup (b_2,a_2) \cup (a_2,c_2) \cup (c_2,b_1') \cup (b_1',a_2') \cup (a_2',b_2') \cup (b_2',a_3') \cup (b_2',a_3$ $(a'_3,c_3) \cup (c_3,b'_3) \cup (b'_3,a'_1) \cup (a'_1,c_1) \cup (c_1,b_1)$ is a Hamiltonian path between the vertices a_1 and b_1 .Hence G is Hamiltonian-1*-laceable.

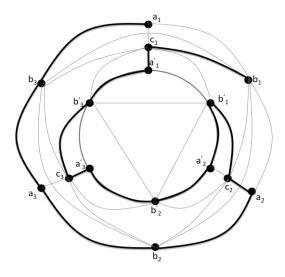


Fig 8: Hamiltonian path from the vertex a_1 to b_1 in the Middle graph $M((Gc_6))$

Case (ii): t = 2

 $\ln G$, $d(a_1, a_2) = 2$, and the path,

 $P:(a_1,b_3) \cup (b_3,a_3) \cup (a_3,b_2) \cup (b_2,c_2) \cup (c_2,b_1') \cup (b_1',a_2') \cup (a_2',b_2') \cup (b_2',a_3') \cup (a_3',c_3) \cup (a_3',c_3) \cup (a_3',c_3') \cup (a_3',c_3$ $(c_3, b_3') \cup (b_3', a_1') \cup (a_1', c_1) \cup (c_1, b_1) \cup (b_1, a_2)$ is a Hamiltonian path between the vertices a_1 and a_2 .Hence G is Hamiltonian-2*-laceable.

Hence the proof.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering http://www.ijmr.net.in email id- irjmss@gmail.com Page 139

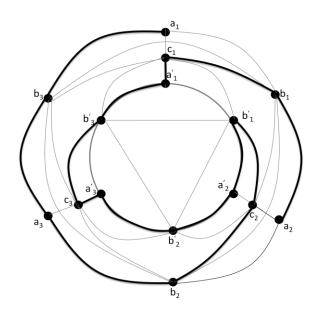


Fig 9: Hamiltonian path from the vertex a_1 to a_2 in the Middle graph $M((Gc)_6)$

Using the same vertex and edge set specified in Theorem 4, we now prove the following result.

Theorem 6: The Graph $G = M(Gc)_{2n}$ is Hamiltonian- t^* -laceable for t = 1, 2 and 3 if n is even and $n \ge 4$.

Proof: We have the following cases.

Case (i): t = 1

In G, $d(a_1, b_1) = 1$ and the path

$$\begin{split} P: &(a_1, b_n) \cup (b_n, a_n) \cup (a_n, b_{n-1}) \cup (b_{n-1}, a_{n-1}) \cup (a_{n-1}, b_{n-2}) \cup \dots \cup (b_3, a_3) \cup (a_3, b_2) \cup \\ &(b_2, a_2) \cup (a_2, c_2) \cup (c_2, a_2') \cup (a_2', b_2') \cup (b_2', c_3) \cup (c_3, a_3') \cup (a_3', b_3') \cup \dots \cup (c_{n-3}, a_{n-3}') \cup \\ &(a_{(n-3)}', b_{(n-3)}') \cup (b_{(n-3)}', c_{(n-2)}) \cup \dots \cup (c_n, a_n') \cup (a_n', b_n') \cup (b_n', a_1') \cup (a_1', b_1') \cup (b_1', c_1) \cup (c_1, b_1) \text{ is a} \end{split}$$

Hamiltonian path between the vertices a_1 and b_1 . Hence G is Hamiltonian-1*-laceable.

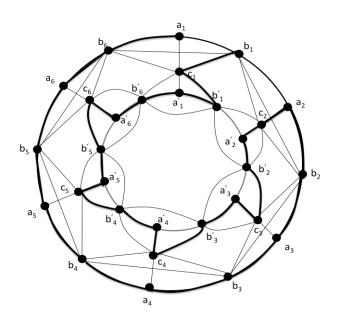


Fig 10: Hamiltonian path from the vertex a_1 to b_1 in the Middle graph $M(Gc)_{12}$)

 $\ln G,\, d(a_{\scriptscriptstyle 1},a_{\scriptscriptstyle 2})=2\,$ and the path

$$\begin{split} P: &(a_1, b_n) \cup (b_n, a_n) \cup (a_n, b_{n-1}) \cup (b_{n-1}, a_{n-1}) \cup (a_{n-1}, b_{n-2}) \cup \dots \cup (b_3, a_3) \cup (a_3, b_2) \cup \\ &(b_2, c_2) \cup (c_2, b_1') \cup (b_1', a_2') \cup (a_2', b_2') \cup \dots \cup (a_{(n-3)}', c_{(n-3)}) \cup (c_{(n-3)}, b_{(n-3)}') \cup \dots \cup \\ &(b_{(n-2)}', a_{(n-1)}') \cup (a_{(n-1)}', c_n) \cup (c_n, b_{(n-1)}') \cup (b_{(n-1)}', a_n') \cup (a_n', c_n) \cup (c_n, b_n') \cup (b_n', a_1') \cup (a_1', c_1) \cup \\ &(c_1, b_1) \cup (b_1, a_2) \text{ is a Hamiltonian path between } a_1 \text{ and } a_2. \text{ Hence } G \text{ is Hamiltonian-2*-laceable.} \end{split}$$

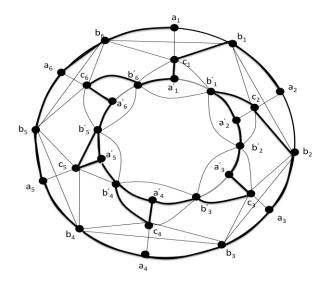


Fig 11: Hamiltonian path from the vertex a_1 to a_2 in the Middle graph $M((Gc)_{12})$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering <u>http://www.ijmr.net.in</u> email id- irjmss@gmail.com Page 141

In G, $d(a_1, a_3) = 3$ and the path

 $P:(a_1,b_n) \cup (b_n,a_n) \cup (a_n,b_{n-1}) \cup (b_{n-1},a_{n-1}) \cup (a_{n-1},b_{n-2}) \cup \dots \cup (b_5,a_5) \cup (a_5,b_4) \cup (a$ $(b_3, a_3) \cup (b_4, a_4) \cup (a_4, b_3) \cup \dots \cup (a_2', b_2') \cup (b_2', b_1') \cup (b_1', a_1') \cup (a_1', c_1) \cup (c_1, b_n') \cup (a_1', c_2) \cup (c_2', b_2') \cup (c_2', b_$ $(b'_{n},a'_{n}) \cup (a'_{n},c_{n}) \cup (c_{n},b'_{n-1}) \cup (b'_{n-1},a'_{n-1}) \cup (a'_{n-1},c_{n-1}) \cup \dots \cup (b'_{5},a'_{5}) \cup (a'_{5},c_{5}) \cup (c_{5},b'_{4}) \cup \dots \cup (b'_{5},a'_{5}) \cup (a'_{5},c_{5}) \cup (c_{5},b'_{5}) \cup (c_{5},b'_{5}) \cup \dots \cup (c_{5},b'_{5}) \cup (c_{$ $(b'_4, a'_4) \cup (a'_4, c_4) \cup (c_4, b'_3) \cup (b'_3, a'_3) \cup (a'_3, c_3) \cup (c_3, a_3)$ is a Hamiltonian path between a_1 and a_3 .Hence G is Hamiltonian-3*-laceable.

Hence the proof.

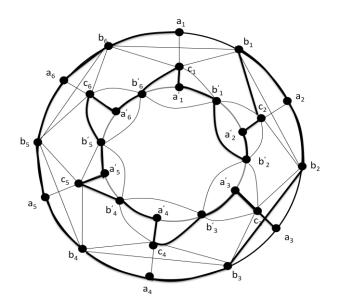


Fig 12: Hamiltonian path from the vertex a_1 to a_3 in the Middle graph $M((Gc)_{12})$

Theorem 7: The Graph $G = M(W_{1,n}, k), k = 1$ is Hamiltonian- t^* -laceable for t = 1, 2 and 3 if n is odd and $n \ge 3$.

Proof: Let $V((W_{1,n},k)) = \{a_0\} \cup \{a_{11}, a_{12}, \dots, a_{1n}\} \cup \{a_1, a_2, \dots, a_n\}$ and

 $E((W_{1,n},k)) = \{b_i : 1 \le i \le n\} \cup \{a'_i : 1 \le i \le n-1\} \cup \{a'_n\} \cup \{b'_i : 1 \le i \le n-1\} \cup \{b'_n\} \cup \{a_{1,i} : 1 \le i \le n\}$ where b_i is the edge a_0a_i $(1 \le i \le n)$, a'_i is the edge a_ia_{i+1} $(1 \le i \le n)$, a'_n is the edge a_na_1 $(1 \le i \le n)$, b'_i is the edge $a_i a_{i(i+1)}$ $(1 \le i \le n)$, b'_n is the edge $a_n a_{1n}$ $(1 \le i \le n)$ and a'_{1i} is the edge $a_i a'_{i(i+1)}$.

By the definition of Middle graph $V(M((W_{1n},k)) = V((W_{1n},k)) \cup E((W_{1n},k)) = \{a_{1i}: 1 \le i \le n\} \cup E(W_{1n},k) = \{a_{1i}: 1 \le i \le$ $\{a_i: 1 \le i \le n\} \cup \{b_i: 1 \le i \le n\} \cup \{a_i': 1 \le i \le n\} \cup \{b_i': 1 \le i \le n\} \cup \{a_{1i}: 1 \le i \le n\}.$

We have the following cases.

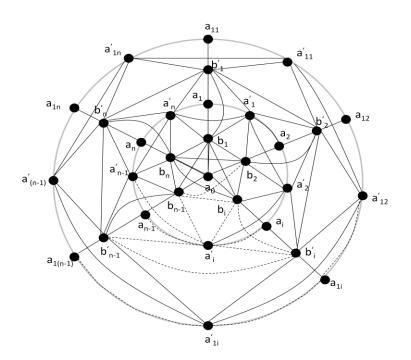


Fig 13: The graph $M(W_{1,n},k)$

In G, $d(a_{k_1}, a'_{k_1}) = 1$ and the path

 $P:(a_{k_1},a'_{k_n})\cup(a'_{k_1},a_{k_n})\cup(a_{k_n},a'_{k_{(n-1)}})\cup(a'_{k_{(n-1)}},a'_{k_{(n-2)}})\cup\dots\dots\cup(a'_{k_3},a_{k_3})\cup(a_{k_3},a'_{k_2})\cup$ $(a'_{k_2}, a_{k_2}) \cup (b'_2, a'_1) \cup (a'_1, a_2) \cup (a_2, b_2) \cup (b_2, a'_2) \cup (a'_2, b'_3) \cup (b'_3, a_3) \cup (a_3, b_3) \cup (a'_2, b'_3) \cup (a'_3, b'_3) \cup (a'_2, b'_3) \cup (a'_2, b'_3) \cup (a'_2, b'_3) \cup (a'_3, b'_3) \cup (a'_3, b'_3) \cup (a'_2, b'_3) \cup (a'_2, b'_3) \cup (a'_2, b'_3) \cup (a'_3, b'_3) \cup (a'_3, b'_3) \cup (a'_2, b'_3) \cup (a'_2, b'_3) \cup (a'_2, b'_3) \cup (a'_3, b'_3) \cup (a'_3, b'_3) \cup (a'_2, b'_3) \cup (a'_3, b'_3) \cup (a'_$ $(b_{3},a_{3}') \cup (a_{3}',b_{n-1}') \cup (b_{n-1}',a_{n-1}) \cup \dots \cup (a_{n}',a_{n}) \cup (a_{n},b_{n}) \cup (b_{n},a_{0}) \cup (a_{0},b_{1}) \cup (b_{1},a_{1}) \cup (b_{n},a_{0}) \cup (a_{n},b_{n}) \cup (b_{n},a_{0}) \cup (a_{n},b_{n}) \cup (b_{n},a_{0}) \cup (b_{n},a_{0})$ $(a_1,b_1') \cup (b_1',a_{k_1}')$ is a Hamiltonian path between the vertices a_{k_1} and a_{k_1}' . Hence G is a Hamiltonian-1*laceable.

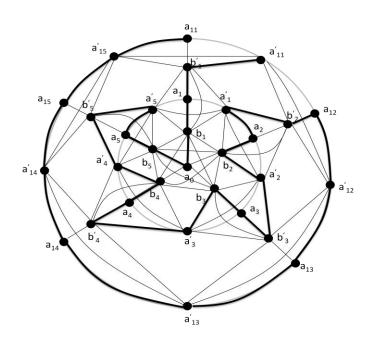


Fig 14: Hamiltonian path from the vertex a_{11} to a'_{11} in the graph $M(W_{1,5},1)$

In G, $d(a_{k_1}, a_{k_2}) = 1$ and the path

 $P:(a_{k_1},a'_{k_n})\cup(a'_{k_n},a_{k_n})\cup(a_{k_n},a'_{k_{(n-1)}})\cup(a'_{k_{(n-1)}},a_{k_{(n-1)}})\cup\ldots\cup(a'_{k_3},a_{k_3})\cup(a_{k_3},a'_{k_2})\cup(a'_{k_2},a_{k_2})\cup(a'_{k_2},a_{k_2})\cup(a'_{k_2},a_{k_3})\cup(a'_{k_3},a'_{k_3})\cup(a'_{k_3},a$ $(a'_3,b'_3) \cup (b'_3,a_3) \cup (a_3,b_3) \cup (b_3,a_0) \cup (a_0,b_2) \cup (b_2,a'_2) \cup (a'_2,a_2) \cup (a_2,a'_1) \cup (a'_1,b'_2) \cup (a'_1,b'_2) \cup (a'_2,a'_1) \cup (a'_1,b'_2) \cup (a'_2,a'_1) \cup (a'_1,b'_2) \cup (a'_2,a'_1) \cup (a'_1,b'_2) \cup (a'_2,a'_2) \cup (a'_2,a'_1) \cup (a'_1,b'_2) \cup (a'_1,b'_2) \cup (a'_2,a'_2) \cup (a'_2,a'_1) \cup (a'_1,b'_2) \cup (a'_1,b'_2) \cup (a'_2,a'_2) \cup (a'_2,a'_2$ (b'_2, a_{k_2}) is a Hamiltonian path between the vertices a_{k_1} and a_{k_2} . Hence G is a Hamiltonian-2*-laceable.

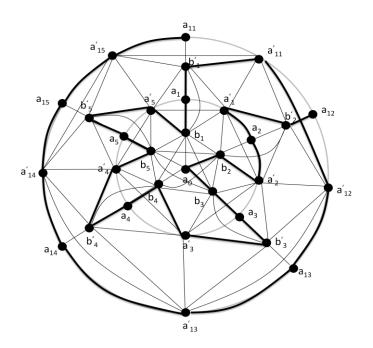


Fig 15: Hamiltonian path from the vertex a_{11} to a_{12} in the graph $M(W_{1,5}, l)$

In G, $d(a_{k_1}, a_0) = 3$ and the path

 $P:(a_{k_1},a_{k_n}')\cup(a_{k_n}',a_{k_n})\cup(a_{k_n},a_{k_{(n-1)}}')\cup(a_{k_{(n-1)}}',a_{k_{(n-1)}})\cup\dots\dots\cup(a_{k_3}',a_{k_3})\cup(a_{k_3},a_{k_2}')\cup$ $(a'_{k_2}, a_{k_2}) \cup (a_{k_2}, a'_{k_1}) \cup (a'_{k_1}, b'_1) \cup (b'_1, a_1) \cup (a_1, b_1) \cup (a'_n, b'_n) \cup (b'_n, a_n) \cup (a_n, b_n) \cup (b_n, a'_{n-1}) \cup (b'_n, a'_{n (a'_{n-1},b'_{n-1}) \cup \dots \cup (a'_3,b'_3) \cup (b'_3,a_3) \cup (a_3,b_3) \cup (b_3,a'_2) \cup (a'_2,b'_2) \cup (b'_2,a_2) \cup (a_2,a'_1) \cup (a'_3,b'_3) \cup (a'_3,b'$ $(a_1',b_2) \cup (b_2,a_0)$ is a Hamiltonian path between the vertices a_{k_1} and a_0 . Hence G is a Hamiltonian-3*laceable. Hence the proof.

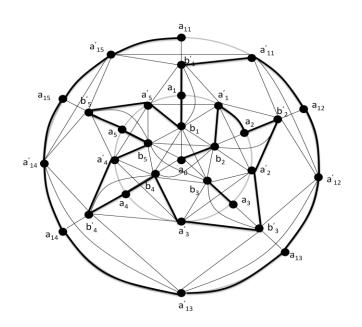


Fig 16: Hamiltonian path from the vertex a_{11} to a_0 in the graph $M(W_{1.5}, 1)$

Using the same vertex and edge set specified in Theorem 7, we now prove the following result.

Theorem 8: The Graph $G = M(W_{1,n}, k), k = 1$, is Hamiltonian- t^* -laceable for t=1,2 and 3 if n is even and $n \ge 4$.

Proof: We have the following cases.

Case (i): t = 1

In G, $d(a_{k_1}, a'_{k_1}) = 1$ and the path

 $P:(a_{k_1},a_{k_n}')\cup(a_{k_n}',a_{k_n})\cup(a_{k_n},a_{k_{(n-1)}}')\cup(a_{k_{(n-1)}}',a_{k_{(n-2)}}')\cup\ldots\cup(a_{k_4}',a_{k_4})\cup(a_{k_4},a_{k_3}')\cup(a_{k_3}',a_{k_3})\cup(a_{k_3$ $(a_{k_2}, a_{k_2}') \cup (a_{k_2}', a_{k_2}) \cup (a_{k_2}, b_2') \cup (b_2', a_2) \cup (a_2, b_2) \cup (b_2, a_2') \cup (a_2', b_3') \cup (b_3', a_3) \cup (b_3', a_3) \cup (b_3', a_3') \cup (b_3', a$ $(a_{3},b_{3})\cup\ldots\cup\cup(b_{n-2}',a_{n-2})\cup(a_{n-2},b_{n-2})\cup(b_{n-2},a_{n-2}')\cup(a_{n-2}',b_{n-1}')\cup\ldots\cup\cup(a_{3}',b_{n-1}')\cup$ $(a_0,b_n) \cup (b_n,a_{n-1}') \cup (a_{n-1}',a_n) \cup (a_n,b_n') \cup (b_n',a_n') \cup (a_n',b_1) \cup (b_1,a_1) \cup (a_1,b_1') \cup (b_1',a_{k_1}') \quad \text{is } \ \text{and} \ (a_0,b_n) \cup (a_0',b_1') \cup (a_0',b$ Hamiltonian path between the vertices a_{k_1} and a'_{k_1} . Hence *G* is a Hamiltonian-1*-laceable.

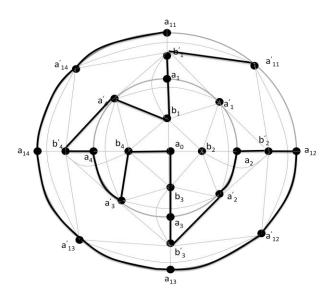


Fig 17: Hamiltonian path from the vertex a_{11} to a_{11}' in the graph $M(W_{1,4},1)$

In $\mathit{G},\, d(a_{\scriptscriptstyle k_1},a_{\scriptscriptstyle k_2})=2$ and the path

$$P: (a_{k_1}, a'_{k_n}) \cup (a'_{k_n}, a_{k_n}) \cup (a_{k_n}, a'_{k_{(n-1)}}) \cup (a'_{k_{(n-1)}}, a_{k_{(n-1)}}) \cup \dots \cup (a'_{k_4}, a_{k_4}) \cup (a_{k_4}, a'_{k_3}) \cup (a'_{k_3}, a_{k_3}) \cup (a_{k_3}, a'_{k_2}) \cup \dots \cup (a_1, b_1) \cup (b_1, a'_n) \cup (a'_n, b'_n) \cup (b'_n, a_n) \cup (a_n, b_n) \cup (b_n, a'_{n-1}) \cup (a'_{n-1}, b'_{n-1}) \cup \dots \cup (a'_3, a'_2) \cup (a'_2, b'_3) \cup (b'_3, a_3) \cup (a_3, b_3) \cup (b_3, a_0) \cup (a'_{n-1}, a_n) \cup (a_0, b_2) \cup$$

 $(b_2, a_2) \cup (a_2, b'_2) \cup (b'_2, a_{k_2})$ is a Hamiltonian path between the vertices a_{k_1} and a_{k_2} . Hence G is a Hamiltonian-2*-laceable.

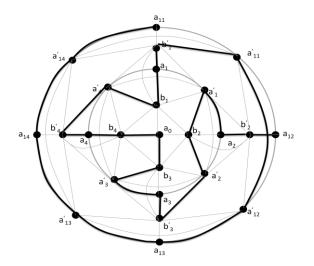


Fig 18: Hamiltonian path from the vertex a_{11} to a_{12} in the graph $M(W_{1,4},1)$

In G, $d(a_{k_1}, a_0) = 3$ and the path

 $P:(a_{k_1},a'_{k_2})\cup(a'_{k_n},a_{k_n})\cup(a_{k_n},a'_{k_{(n-1)}})\cup(a'_{k_{(n-1)}},a_{k_{(n-1)}})\cup\dots\dots\cup(a'_{k_n},a_{k_n})\cup(a_{k_n},a'_{k_n})\cup$ $(a'_{k_3}, a_{k_3}) \cup (a_{k_3}, a'_{k_2}) \cup \dots \cup (a_1, b_1) \cup (b_1, a'_n) \cup (a'_n, b'_n) \cup (b'_n, a_n) \cup (a_n, b_n) \cup (b_n, a'_{n-1}) \cup (b'_n, a'_n) \cup (b'_$ $(a_{\it n-1}',b_{\it n-1}')\cup\cup (a_{\it 4}',b_{\it 4}')\cup (b_{\it 4}',a_{\it 4})\cup (a_{\it 4},b_{\it 4})\cup (b_{\it 4},a_{\it 3}')\cup (a_{\it 3}',b_{\it 3}')\cup (b_{\it 3}',a_{\it 3})\cup (a_{\it 3},b_{\it 3})\cup$ $(b_3, a_2') \cup (a_2', b_2') \cup (b_2', a_1') \cup (a_1', a_2) \cup (a_2, b_2) \cup (b_2, a_0)$ is a Hamiltonian path between the vertices a_{k_1} and a_0 . Hence G is a Hamiltonian-3*-laceable.

Hence the proof.

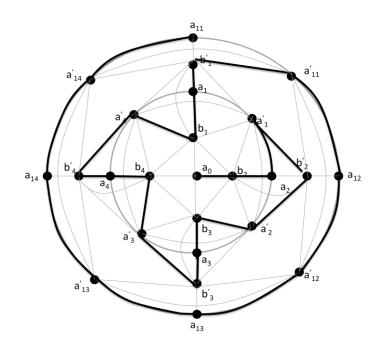


Fig 19: Hamiltonian path from the vertex a_{11} to a_0 in the graph $M(W_{1,4},1)$

4. Conclusion

In this paper, the Hamiltonian Laceability properties of the cubic graph $(Gc)_{2n}$ and the graph $(W_{1.\,n},k)$ have been obtained. Whether these graphs are Hamiltonian-t-laceable for all t is an open problem.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering http://www.ijmr.net.in email id- irjmss@gmail.com

5. Acknowledgements

The first author thankfully acknowledges the support and encouragement provided by the Management and R&D centre, Department of Mathematics, Dr Ambedkar Institute of Technology, Bangalore.

6. References

- [1] F. Harary, Graph Theory, Narosa Publishing 1969.
- [2] Jain Akiyama and Takashi Hamada and I.Yoshimura, On Charecterization of middle graphs, True Mathematics 11 (1975), pp 35-39.
- [3] Thimmaraju S N and Murali R, Laceability on a Class of Regular Graphs, International Journal of Computational Science and Mathematics, 2010:2(3), pp.397-406.

[4] Vernold Vivin J and K. Thilagavathi, On Harmonious Colouring of Line Graph of Central Graph of Paths, Applied MathematicalmSciences, Vol.3, No.5, pp.205-214.

- [5] S. K. Vaidya and P. L. Vihol, Cardial Labeling for Middle Graph of Some Graphs, Discrete Mathematics Elixir Dis.Math.34 C(2011), pp. 2468-2476.
- [6] Girisha. A and R. Murali, i-Hamiltonian Laceability in Some Product Graphs, Internationa Journal
- of Computational Science and Mahematics, Volume 4, No.2(2012), pp.145-158.
- [7] Girisha. A and R. Murali, Hamiltonian Laceability in Some Classes of Star Graphs, ISSN 2319-596, International Journal of Engineering Science and innovative Technology, Volume 2, Issue 3, May 2013. pp.68-71.
- [8] Manjunath. G and R. Murali, Hamiltonian Laceability in Brick Product C(2n+1,1,r), Advances in Applied Mathematical Biosciences, Volume 5, No.1(2014), pp.13-32.
- [9] Manjunath. G and R. Murali, Hamiltonian-t*-Laceability in Jump Graphs of Diameter two, IOSR Journal of Mathematics, Volume10, Issue 3 Ver III(May- Jun.2014), pp-55-63.
- [10] Manjunath. G, R. Murali and Girisha .A, Hamiltonian Laceability in Line Graphs, International Journal of Computer Applications, Volume 98, No.12, July 2014, pp.17-25.

[11]Manjunath.G, R. Murali and Rajendra. S. K, Hamiltonian Laceability in Total Graphs, International Journal of Mathematics and Computer Research, Volume 2, Issue 12(Dec -2014),pp.774-785

[12] Manjunath. G and R. Murali, Hamiltonian Laceability in Middle Graph, International Journal of Engineering Sciences and Research Technology, Vol.4, Issue 1(Jan-2015), pp.203-210.

[13] Manjunath. G, R. Mural and S. N. Thimmaraju, Hamiltonian Laceability in Modified Brick Product of Odd Cycles, International Journal of Mathematical Sciences, Accepted.

[14] Girisha. A, A Study of Hamiltonian Laceability in Graphs, Doctoral thesis, VTU 2014.