The number of Smallest parts of $\ partitions \ { m of} \ n$

K.Hanuma Reddy Department of mathematics Hindu College Acharya Nagarjuna University Guntur, A.P-522002, India. A.manjusri Department of mathematics Hindu College Acharya Nagarjuna University Guntur, A.P-522002, India.

Abstract:

George E Andrews derived formula for the number of smallest parts of *partitions* of a positive integer *n*. In this paper we derived the formula efficiently by using the concepts of r - partitions of *n*.

Keywords: partition, r - partition, smallest parts of the partition and r - partition of positive integer *n*.

Subject classification: 11P81 Elementary theory of partitions.

Introduction

We adopt the common notation on *partitions* as used in [1]. A *partition* of a positive integer n is a finite nonincreasing sequence of positive integers $\lambda_1, \lambda_2, ..., \lambda_r$ such that $\sum_{i=1}^r \lambda_i = n$ and it is denoted by $n = (\lambda_1, \lambda_2, ..., \lambda_r)$. The λ_i are called the parts of the *partition*. Throughout this paper λ stands for a *partition* of n, $\lambda = (\lambda_1, \lambda_2, ..., \lambda_r)$, $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_r$.

Let $\xi(n)$ denote the set of all *partitions* of n and p(n) the cardinality of $\xi(n)$ for $n \in N$ and p(0)=1. If $1 \le r \le n$ write $p_r(n)$ for the number of *partitions* of n each consisting of exactly r parts, i.e. r – *partitions* of n. If $r \le 0$ or $r \ge n$ we write $p_r(n)=0$. Let p(k,n) represent the number of *partitions* of n using natural numbers at least as large as k only.

Let spt(n) denote the number of smallest parts including repetitions in all *partitions* of n. Let us adopt the following notation. $m_s(\lambda) =$ number of smallest parts of λ .

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering http://www.ijmr.net.in email id – irjmss@gmail.com $spt(n) = \sum_{\lambda \in \xi(n)} m_s(\lambda)$

1.1 Existing generating functions are given below.

Function	Generating function	
$p_r(n)$	$rac{q^r}{\left(q ight)_r}$	
$p_r(n-k)$	$\frac{q^{r+k}}{(q)_r}$	
number of divisors	$\sum_{n=1}^{\infty} \frac{q^n}{\left(1-q^n\right)}$	
sum of divisors	$\sum_{n=1}^{\infty}rac{n.q^n}{\left(1-q^n ight)}$	(1.1.1)

where $(q)_k = \prod_{n=1}^k (1-q^n)$ for k > o, $(q)_k = 1$ for k = o and $(q)_k = 0$ for k < o.

Since
$$(a)_n = (a;q)_n = (1-a)(1-aq)(1-aq^2)...(1-aq^{n-1})$$
 [1]

1.2 Theorem:
$$spt(n) = \sum_{k=1}^{\infty} \sum_{t=1}^{\infty} p(k, n-tk) + d(n)$$
 (1.2.1)

Proof: [2] Let $n = (\lambda_1, \lambda_2, ..., \lambda_r) = (\mu_1^{\alpha_1}, \mu_2^{\alpha_2}, ..., \mu_{l-1}^{\alpha_{l-1}}, k^{\alpha_l})$ be any r - partition of n with l distinct parts.

Case 1: [3] Let $r > \alpha_l = t$ that means $\lambda_{r-t} > k$ Subtract all k's, we get $n - tk = (\mu_1^{\alpha_1}, \mu_2^{\alpha_2}, ..., \mu_{l-1}^{\alpha_{l-1}})$ Hence $n - tk = (\mu_1^{\alpha_1}, \mu_2^{\alpha_2}, ..., \mu_{l-1}^{\alpha_{l-1}})$ is a (r-t) - partition of n - tk with l - 1 distinct parts and each part greater than k + 1. For corresponding to it they are (r-t) - partitions of n - tk. Now we get, the number $p_{r-t} (k+1, n-tk)$ of r - partitions of n with exactly t smallest elements as k. **Case 2:** Let $r > \alpha_l > t$ that means $\lambda_{r-t} = k$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering http://www.ijmr.net.in email id – irjmss@gmail.com

Omit k's from last t places, we get $n-tk = \left(\mu_1^{\alpha_1}, \mu_2^{\alpha_2}, ..., \mu_{l-1}^{\alpha_{l-1}}, k^{\alpha_{l-1}}\right)$

Hence $n-tk = (\mu_1^{\alpha_1}, \mu_2^{\alpha_2}, ..., \mu_{l-1}^{\alpha_{l-1}}, k^{\alpha_l-t})$ is a (r-t) - partition of n-tk with l distinct parts and the least part is k. For corresponding to it there are r - partitions of n-tk with least part k.

Now we get the number $f_{r-t}(k, n-tk)$ of r-partitions of n with more than t smallest elements as k.

Case 3: Let $r = \alpha_l = t$ that means all parts in the *partition* are equal. For each r - partition with equal parts have r - partitions of n.

From cases (1), (2) and (3) we get r - partitions of n with t smallest parts as k is

$$f_{r-t}(k, n-tk) + p_{r-t}(k+1, n-tk) + \beta$$

where $\beta = 1$ if $r \mid n$ and $\beta = 0$ otherwise
$$= f_{r-t}(k, n-tk) + p_{r-t}(k+1, n-tk) + \beta$$

$$= p_{r-t}(k, n-tk) + \beta$$

The number of *partitions* of *n* with equal parts is equal to the number of divisors of *n*. Since the number of divisors of *n* is d(n). Then the number of *partitions* of *n* with all parts are equal is d(n).

From [5], the number of smallest parts in *partitions* of *n* is

$$spt(n) = \sum_{k=1}^{\infty} \sum_{t=1}^{\infty} p(k, n-tk) + d(n)$$

1.3 Theorem: $p_r(k+1,n) = p_r(n-kr)$

Proof: Let $n = (\lambda_1, \lambda_2, ..., \lambda_r), \lambda_i > k \forall i$ be any r - partition of n.

Subtracting each part by k , we get $n - kr = (\lambda_1 - k, \lambda_2 - k, ..., \lambda_r - k)$

Hence $n - kr = (\lambda_1 - k, \lambda_2 - k, ..., \lambda_r - k)$ is a r - partition of n - kr.

Therefore the number of r - partitions of n with parts greater than or equal to k+1 is $p_r(n-kr)$

1.4 Theorem:
$$\sum_{n=0}^{\infty} spt(n)q^n = \frac{1}{(q)_{\infty}} \sum_{n=1}^{\infty} \frac{q^n}{(1-q^n)} (q)_{n-1}$$

Proof: From theorem (1.2.1), we have

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering

http://www.ijmr.net.in email id - irjmss@gmail.com

$$spt(n) = \sum_{r=1}^{\infty} \sum_{t=1}^{\infty} p(k, n-tk) + d(n)$$

Replace k + 1 by k, n by n - tk in (1.3.1)

$$=\sum_{t=1}^{\infty}\sum_{r=1}^{\infty}\sum_{n=1}^{\infty}p_{r}\left(n-tk-r\left(k-1\right)\right)+d\left(n\right)$$

Where d(n) is the number of positive divisors of n.

From (1.1.1)

$$\begin{split} &= \sum_{k=1}^{\infty} \sum_{r=1}^{\infty} \sum_{r=1}^{\infty} \frac{q^{r+rk+r(k-1)}}{(q)_{r}} + \sum_{k=1}^{\infty} \frac{q^{k}}{1-q^{k}} \\ &= \sum_{k=1}^{\infty} \sum_{r=1}^{\infty} \sum_{r=1}^{\infty} \frac{q^{rk+rk}}{(q)_{r}} + \sum_{k=1}^{\infty} \frac{q^{k}}{1-q^{k}} \\ &= \sum_{k=1}^{\infty} \sum_{r=1}^{\infty} q^{rk} \left[\sum_{r=1}^{\infty} \frac{(q^{k})^{r}}{(q)_{r}} \right] + \sum_{k=1}^{\infty} \frac{q^{k}}{1-q^{k}} \\ &= \sum_{k=1}^{\infty} \frac{q^{k}}{(1-q^{k})} \left[\left(1 + \sum_{r=1}^{\infty} \frac{(q^{k})^{r}}{(q)_{r}} \right) - 1 \right] + \sum_{r=1}^{\infty} \frac{q^{k}}{1-q^{k}} \\ &= \sum_{k=1}^{\infty} \frac{q^{k}}{(1-q^{k})} \left[1 + \sum_{r=1}^{\infty} \frac{(q^{k})^{r}}{(q)_{r}} \right] \\ &= \sum_{k=1}^{\infty} \frac{q^{k}}{(1-q^{k})} \left[1 + \sum_{r=1}^{\infty} \frac{(q^{k})^{r}}{(q)_{r}} \right] \\ &= \sum_{k=1}^{\infty} \frac{q^{k}}{(1-q^{k})} \prod_{r=0}^{\infty} \left(\frac{1}{1-q^{r}q^{k}} \right) \qquad \text{from [1]} \\ &= \sum_{k=1}^{\infty} \frac{q^{k}}{(1-q^{k})} \prod_{r=0}^{\infty} \left(\frac{1}{1-q^{r+k}} \right) \\ &= \frac{1}{(q)_{\infty}} \sum_{k=1}^{\infty} \frac{q^{k}}{(1-q^{k})} (q)_{k-1} \\ &= \frac{1}{(q)_{\infty}} \sum_{n=1}^{\infty} \frac{q^{n}}{(1-q^{n})} (q)_{n-1} \end{split}$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering <u>http://www.ijmr.net.in_email_id__</u>irjmss@gmail.com **1.5 Corollary:** The generating function for the number $A_c(n)$ of smallest parts of the *partitions* of *n* which are multiples of *c* is

$$\sum_{n=0}^{\infty} A_{c}(n) q^{n} = \frac{1}{(q)_{\infty}} \sum_{n=1}^{\infty} \frac{q^{cn}}{(1-q^{cn})} (q)_{cn-1}$$

1.6 Corollary: The generating function for the sum of smallest parts of the second *partitions* of *n* is

$$\sum_{n=0}^{\infty} sum spt(n)q^n = \frac{1}{(q)_{\infty}} \sum_{n=1}^{\infty} \frac{nq^n}{(1-q^n)} (q)_{n-1}$$

Proof: The generating function for the sum of smallest parts of the second *partitions* of a positive integer n is

$$spt(n) = \sum_{r=1}^{\infty} \sum_{t=1}^{\infty} k p(k, n-tk) + d(n)$$
$$= \sum_{t=1}^{\infty} \sum_{r=1}^{\infty} \sum_{n=1}^{\infty} k p_r(n-tk-r(k-1)) + d(n)$$

where d(n) is the number of positive divisors of n.

From (1.1.1)

$$\begin{split} &= \sum_{k=1}^{\infty} \sum_{r=1}^{\infty} \sum_{r=1}^{\infty} \frac{kq^{r+rk+r(k-1)}}{(q)_r} + \sum_{k=1}^{\infty} \frac{kq^k}{1-q^k} \\ &= \sum_{k=1}^{\infty} \sum_{r=1}^{\infty} \sum_{r=1}^{\infty} \frac{kq^{rk+rk}}{(q)_r} + \sum_{k=1}^{\infty} \frac{kq^k}{1-q^k} \\ &= \sum_{k=1}^{\infty} \sum_{r=1}^{\infty} kq^{rk} \left[\sum_{r=1}^{\infty} \frac{(q^k)^r}{(q)_r} \right] + \sum_{k=1}^{\infty} \frac{kq^k}{1-q^k} \\ &= \sum_{k=1}^{\infty} \frac{kq^k}{(1-q^k)} \left[\left(1 + \sum_{r=1}^{\infty} \frac{(q^k)^r}{(q)_r} \right) - 1 \right] + \sum_{r=1}^{\infty} \frac{kq^k}{1-q^k} \\ &= \sum_{k=1}^{\infty} \frac{kq^k}{(1-q^k)} \prod_{r=0}^{\infty} \left(\frac{1}{1-q^rq^k} \right) \\ &= \sum_{k=1}^{\infty} \frac{kq^k}{(1-q^k)} \prod_{r=0}^{\infty} \left(\frac{1}{1-q^{r+k}} \right) \end{split}$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering

http://www.ijmr.net.in email id - irjmss@gmail.com

$$= \frac{1}{(q)_{\infty}} \sum_{k=1}^{\infty} \frac{kq^{k}}{(1-q^{k})} (q)_{k-1}$$
$$= \frac{1}{(q)_{\infty}} \sum_{n=1}^{\infty} \frac{nq^{n}}{(1-q^{n})} (q)_{n-1}$$
$$\sum_{n=0}^{\infty} sum spt(n) q^{n} = \frac{1}{(q)_{\infty}} \sum_{n=1}^{\infty} \frac{nq^{n}}{(1-q^{n})} (q)_{n-1}$$

Acknowledgments

The author is thankful to Prof. (Retd) I.Ramabhadra Sarma for his constant encouragement and suggestions.

References

[1] Andrews, G. E. (1998), The Theory of Partitions, *Cambridge University Press*, Cambridge. MR **99c:**11126.

[2] HanumaReddy.K. (2009), A Note on r - partitions of n in which the least part is k, International Journal of Computational Mathematical Ideas, **2**,1,pp. 6-12.

[3] HanumaReddy.K. (2010), A Note on *partitions*, International Journal of Mathematical Sciences, **9**, 3-4, pp. 313-322.

[4] HanumaReddy.K. (2011), Thesis, A Note on r - partitions, Acharya Nagarjuna University, Andhra Pradesh, India.

[5] RamabhadraSarma.I, HanumaReddy.K, S.RaoGunakala and D.M.G.Comissiong, (2011), Relation between Smallest and Greatest Parts of the Partitions of n ,Journal ofMathematics Research,3,4, pp. 133-140.