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ON HORIZONTAL AND COMPLETE LIFTS OF (1, 1) TENSOR FIELD f SATISFYING 

STRUCTURES 

f
11

 – 
2
 f 

9
 = 0 AND f 

10
 – f = 0 

 
RAM SWAROOP, DEAPARTMENT OF MATHEMATICS, NIMS UNIVERSITY,JAIPUR,RAJASTHAN. 

 
Abstract. The horizontal and complete lifts from a differentiable manifold of class C

∞ 
to its co-

tangent bundle T
*
(M

n
) have been studied by Yano and Patterson [4, 5]. Yano and Ishihara [6] 

studied lifts of an f-structure in the tangent and co-tangent bundle. f-structures manifolds of 
degree 8 have been studied by Kim, J.B. [2]. The present paper deals with some problems on 

horizontal arid complete lifts of structures mentioned above in tangent and co-tangent bundles and 

the prolongation in the second tangent space T2(M
n
). Integrability conditions of f-structure 

manifolds of degree 10 in tangent bundle have also been discussed. 

 

1. Preliminaries 

Let M
n
 be n-dimensional differentiable manifold of class C

∞
. Let T

*
(M

n
) be the co-tangent bundle of 

M
n
. Then T*(M

n
) is also a differentiable manifold of class C

∞
 and of dimension 2n. Throughout this 

chapter, we make use of the following notations and conventions: 

(i) The map π: T
*
(M

n
)  M

n
 is the projection map of T

*
(M

n
)      onto M

n
. 

(ii) Suffixes a, b, c,....., h, i, j take the values of 1 to n and = i + n. Suffixes A, B, C,....... take the 

values 1 to 2n. 

(iii) (M
n
) is the set of tensor fields of class C

∞ 
and type (r, s)     on M

n
. Similarly, (T

*
(M

n
)) denotes 

such tensor fields in T
*
(M

n
). 
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(iv) Vector fields in M
n
 are denoted by X, Y, Z,.... and their Lie derivative by LX. The Lie product of 

X and Y is denoted by [X, Y]. If A is a point in M
n
, π

-1
(A)  T

*
(M

n
) called fibre over A. Any point 

P  π
-1

(A) can be denoted by ordered pair (A, PA), PA is the value of 1-form p at A. If U be a co-

ordinate neighborhood in M 
n
 with co-ordinates (X 

h
), π 

-1
 (U) is coordinate neighborhood on T 

*
(M 

n
) with co-ordinate functions (X

h
, Pi). If P lies in the intersecting region π 

- 1
(U)  π 

- 1 
(U

’
) 

with  co-ordinate functions  (X
h
, Pi) and (X 

h'
, Pi , ), then X 

h'
 = X

h '
(X 

h
) and =  Pi. 

Then we have [5] 

(X + Y)
C
= X

C 
+ Y

C
   (1.1) 

and 

(f)
C
(Z)

C 
= (f Z)

C
 + (LZ f)

V
  (1.2) 

Let M
n
 be an n-dimensional connected differentiable manifold of class C

∞
. Let there be given in M

n
, a (1, 

1) tensor field f of class C
∞
 satisfying 

f
11

 – 
2
 
n
 f

9
 = 0,    (1.3) 

where  is non-zero complex number.  

Also, 

rank (f) = (rank f
9
 + dim M

n
) 

= r(a constant everywhere on M
n
) 

Let the operators l
*
 and m

*
 be defined as 

   l
*
 =  and m

*
 = I – ,  (1.4) 
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where I denotes the identity operator on M
n
, Then the operators l

*
 and m

*
 applied to the tangent space at a 

point of the manifold are complementary projection operators. We call such a structure as f(11, 9)-

stucture of rank r on M
n
. 

1.1. Agreement. In what follows we make use of the following results [6]. For any X, Y  (M
n
), we have 

(i) [X
C
, Y

C
] = [X, Y]

 

(ii) f 
C 

X
C
 = [f X]. 

Definition 1.1. Let f be a non-zero tensor field of type (1, 1) and of class C
∞
 on an n-dimensional 

manifold M
n
 such that [2] 

f
10

 – f = 0,   (1.5) 

where rank of f is constant everywhere and equal to r. 

Let the operators on M
n
 be defined as follows [2] 

l = f
9
 and m = I – f,   (1.6) 

where I denotes the identity operator. From the operators denned by (1.6), we have 

       (1.7) 

For f satisfying (1.5), there exist complementary distributions L and M corresponding to the projection 

operators l and m respectively. If rank(f) be r. constant on M
n
 then dimL = r and dimM = n – r. We have 

the following results: 

f l = l f = f and f m = m f = 0,   (1.8) 

f l = 1 and fm = 0.    (1.9) 

Let us call such a structures as f-structure of degree 10. 

2. The complete of f in the tangent bundle T(M
n
) 

The complete lift of f
C
 of an element of (M

n
) with local component of has components of the form 

   f
C
 =     (2.1) 

Now, we prove some theorems on the complete lifts of f(11-, 9)-structure satisfying (1.3) and also its 

integrability conditions. 

Theorem 2.1. The complete lift of (1,1)  tensor field f satisfying f(11, 9)-structure in M
n
 will admit the 

similar structure in the tangen bundle T(M)
n
. 

Proof. Let f, g   (M
n
), then we have 

   (f g)
C
 = f 

C
 g 

C
.    (2.2) 

Putting f = g, we obtain 

(f
 2
)

C
 = (f

 C
)

2
.    (2.3) 

Putting g = f 
2
 in (2.2) and making use of (2.3), we get 

(f
 3
)

C
 = (f

 C
)

2
.    (2.4) 

Continuing the above process of replacing g in equation (2.2) by higher degree of f, we obtain 

(f
 10

)
C
 = (f

 C
)

10 
and so on. 

Taking complete lift on both sides of equation (1.3), we get 

    (f
11

)
C
 – (

2
f 

9
)

C
 = 0   

which in view of the equation (2) gives 

    (f
C
)

11
 –

2
(f

C
)

9
 = 0.  (2.5) 

Thus, the complete lift of f also has f(11, 9)-structure in T(M
n
). The complete lift (l

*
)

C
 and (m

*
)

C
 of l

*
 and 

m
*
 are complementary projection tensors in T(M

n
). Thus, there exist in T(M

n
) two complementary 

distribution (L
*
)

C
 and (M

*
)

C
 determined by (l

*
)

C
 and (m

*
)

C
 respectively.  

Theorem 2.2. The complete lift (m
*
)

C
 of the distribution M

*
 in T(M

n
) is integrable if and only if M

*
 is 

integrable in M
n
. 
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Proof. It is well known that the distribution M
*
 is the integrable in M

n
 if and only if 

l
*
[m

*
 X, m

*
 Y] = 0.   (2.6) 

Taking complete lift of on both side of equation (2.6), we get 

(l
*
)

C
[(m

*
)

C
 X

C
, (m

*
)

C 
Y

C
] = 0,  (2.7) 

where 

(l
*
)

C
 = (I – m

*
)

C
 = I – (m

*
)

C
, as I

C
 = I. 

In consequence of equation (2.7), (m
*
)

C
 is integrable in T(M

n
). 

Theorem 2.3. The complete lift (l
*
)

C
 of the distribution L

*
 in T(M

n
) is integrable if and only if L

*
 is 

integrable in M
n
. 

Proof. Proof is same as that of the theorem 2.2.  

Theorem 2.4. The structure f
C
 is partially integrable if and only if f is partially integrable in M

n
. 

Proof. We know that f is partially integrable if and only if 

N(l
* 
X, l

*
 Y) = 0.    (2.8) 

Taking complete lift on both sides, we obtain 

N((l
*
)

C 
X

C
, (l

*
)

C 
Y

C
) = 0.   (2.9) 

Hence, f
C
 is partially integrable if and only if f is partially integrable in M

n
.  

Theorem 2.5. For any X, Y  (M
n
), let f be integrable in M

n
. Thus, f

c
 is integrable m T(M

n
) if and only if 

N
C
(X

C
, Y

C
) = 0. 

Proof. We know that f is integrable if and only if 

N(X, Y) = 0,    (2.10) 

where N(X, Y) is the Nijenhuis tensor of f satisfying (1.3) and it is given by [6] 

Nf,f (X, Y) = [fX,  fY] – f[fX, Y] – f[X, fY] + f
 2
[X, Y]. (2.11)  

Taking complete lift on both sides, we have 

N
C
(X

C
, Y

C
] = [f

C 
X

C
, f

C
 Y

C
] – f 

C
[f 

C
X

C
, Y

C
] – f

C
[X

C
, fY

C
]  

+ (f 
2
)

C
[X

C
, Y

C
].    (2.12) 

Also, taking complete lift of (2.10), we get 

N
C
(X

C
, Y

C
) = 0, 

which in view of equation (2,11) and (2.12) and the fact f is integrable in M
n
 shows that f 

C
 is integrable in 

T(M
n
). 

3. The complete lift of f(11, 9)-structure in cotangent bundle 

In this section, we prove some theorems on complete lift of f satisfying f(11, 9)-structure. 

Theorem 3.1. The Nijenhuis tensor of the complete of f
11

 vanishes if the lie derivative of the tensor field 

f
11

 with respect to X and Y are both zero and f is an almost -structure on M
n
. 

Proof.  In consequence of (2.11), the Nijenhuis tensor of /
n
 is given by  

 (X
C
, Y

C
) = [(f 

11
)

C
 X)

C
, (f 

11
)

C
 Y)

C
]  

– (f 
11

)
C
[(f 

11
)

C
 X

C
, X

C
] 

– (f 
11

)
C
 [X

C
, (f

11
)

C
Y

C
] 

+ (f 
11

)
C
(f 

11
)

C
 [X

C
, X

C
]   (3.1) 

which in view of (1.3) takes the form 
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  (X
C
, Y

C
) = 

4
[(f 

9
)

C
 X

C
, (f 

9
)

C
 Y)

C
] 

     – 
4
(f 

9
)

C 
[(f 

9
)

C
 X

C
, X

C
] 

    – 
4
(f 

9
)

C
 [X

C
, (f 

9
)

C
 Y)

C
] 

     + 
4
(f 

9
)

C 
(f 

9
)

C
 [X

C
, X

C
]  (3.2) 

In consequence of (1.2), we have 

   (f 
9
)

C
 X

C
 = (f 

9 
X)

C
 + (LX  f

 9
)

V
.  (3.3) 

Hence, we get 

 (X
C
, Y

C
) 

= 
4
{[f 

9 
X)

C
, (f 

9
) Y)

C
] + [(LX  f 

9
)

V
, (f 

9
Y)

V
]  

+ [(f 
9
X)

C
, (LY f 

9
)

V
] + [(LX f 

9
)

V
, (LY f 

9
)

V
] 

– (f 
9
)

C
 [(f 

9
 X)

C
, Y

C
] – (f 

9
)

C
 [(LX f 

9
)

V
, Y

C
] 

– (f 
9
)

C
 [(X

C
, (f 

9 
Y)

C
 – (f 

9
)

C
 [X

C
, (LY f 

9
)

V
] 

+ (f 
9
)

C 
(f 

9
)

C 
[(X

C
, Y

C
]}.    (3.4) 

If the lie derivatives of the tensor field f
 9
 with respect to X and Y are both zero, we have 

LX f = 0 and LY f = 0.  

Therefore, equation (3.4) takes the form 

(X
C
, Y

C
)  = 

4
{[f 

9 
X)

C
, (f 

9
Y)

C
  

– (f 
9
)

C
 [(f 

9
 X)

C
, Y

C
]  

– (f 
9
)

C
 [X

C
, (f 

9 
Y)

C
] 

+ (f 
9
)

C 
(f 

9
)

C 
[(X

C
, Y

C
]}.   (3.5) 

 

(X
C
, Y

C
)  = 

4
{[f 

9 
X, f 

9
Y]

C
  

– (f 
9
)

C
 [f 

9
 X, Y]

C
  

– (f 
9
)

C
 [X

C
, f 

9 
Y]

C
 

+ (f 
9
)

C 
(f 

9
)

C 
[X

C
, Y]

C
}.   (3.6) 

Let f be an almost -structure on M
n
, then f

2
 = 

2 
I, where I is the unit tensor field. Hence, f

 9
 = I and 

therefore (3.6) takes the form 

(X
C
, Y

C
)  = 

4
{[

 
X, Y]

C
 – [X, Y] – [X,

 
Y]

C
 

+ [X, Y]
C
} = 0        

 

Theorem 3.2. The Nijenhuis tensor of the complete of f
11

 is equal to 
4
 multiplied by the complete lift of the 

Nijenhuis tensor of f
11

 if 

i. LX f
 9
 = 0, LY f 

9
 = 0, 

ii. [X, Y]
C
 = 0, = 0, 

where  = f 
9
 + f 

9 
– f 

18
. 

Proof. In view of equation (1.1) and (2.11), we have 

  = (X, Y)
C 

= [f 
9
 X, f 

9
Y]

C
 – (f 

9
[f 

9
 X, Y])

C
 

    –  (f 
9
 [X, f 

9
Y]

C
 + (f 

18
[X, Y])

C
, (3.7) 

which on account of (3.3) yields 

  = (X, Y)
C 

= [f 
9
 X, f 

9
Y]

C
 – (f 

9
)

C
 [f 

9
 X, Y]

C
 

    –  [f 
9
]

V
 – (f 

9
)

C
[X, f 

9
 Y]

C
  

    –  [f 
9
]

V
 – (f 

18
)

C
[X, Y]

C 
– [f 

18
]

V
.   

But, we have [6] 
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   (f 
9
)

C
 (f 

9
)

C
 = (f 

18
)

C
 + ()

V
. (3.8) 

Hence in view (3.8), the equation (3.7) becomes 
(X, Y)

C 
= [f 

9
 X, f 

9
Y]

C
 – (f 

9
)

C
 [f 

9
 X, Y]

C
 

     – (f 
9
)

C
 [X, f 

9
Y]

C
 – (f 

18
)

C
 [X, Y]

C 

     – [f 
9
]

V
 – [f 

9
]

V
 – [f 

18
]

V
. (3.9) 

Now, from (3.8), we have 

  (f 
18

)
C
 = (f 

9
)

C
 (f 

9
)

C
 – ()

V
. 

Thus, 

 (X, Y)
C 

= [f 
9
 X, f 

9
Y]

C
 – (f 

9
)

C
 [f 

9
 X, Y]

C
 

    – (f 
9
)

C
 [X, f 

9
Y]

C
 – (f 

9
)

C
(f 

9
)

C
 [X, Y]

C 

    – ()
V
 [X, Y]

C 
–

 
[f 

9
]

V
  

    – [f 
9
]

V
 – [f 

18
]

V
.  (3.10) 

In view of the equation (3.10), the equation (3.5)  takes the form 

(X
C
, Y)

C  
= 

4
 {(X, Y)

C 
+

 
()

V
 [X, Y]

C 

    – {f 
9 
+ f 

9
 + [f 

18
}

V
}. 

In consequence of ( ), we have 

(X
C
, Y)

C  
= 

4
 {(X, Y)

C 
+

 
()

V
 [X, Y]

C
} – 1 .        

 (3.11) 

Let [X, Y]
C
 = 0 and = 0, the (3.11) reduce to  

  (X
C
, Y)

C 
= 

4
 ((X, Y)

C
). 

 

Theorem 3.3. The Nijenhuis tensor of the complete of f
11

 is equal to the complete lift of the Nijenhuis 

tensor of f
11

 if 

i . LX f 
9
= 0, LY f

 9
 = 0,  

ii. LX Y = 0, = 0. 

Proof. Since [X, Y]
C
 = 0 implies that [X, Y] = 0 or LX Y = 0. Therefore from (3.2), the results follows.  

Theorem 3.4.  The process of computing the Nijenhuis tensor of f 
9 

and taking complete lift are 

commutative. 

Proof. Theorem follows easily from the equation (3.1) and theorem 3.3.  

4. The horizontal lift of a f(11,9)-structure 

In this section, we prove theorem on horizontal lift satisfying the structure (1.3). 

Theorem 4.1. Let f  (M
n
)) be a f(11,9) -structure in M

n
, then the horizontal lift f

H
 off is also f(9, 7)-

structure on T
*
(M

n
). 

Proof. For every f, g  (M
n
), we have [6] 

f 
H 

g 
H
 + g 

H 
f 

H 
= (fg + g f)

H
  (4.1) 

Putting g = f, we get 

2(f 
H
)

2
 = (2 f 

2
)

H
  

or 

(f 
H
)

2
 = (f 

2
)

H
   (4.2) 

Replacing g by f
 2
 in (4.1), we get 

   (f
 H

) (f 
2
)

H
 + (f

 2
) (f

 H
) = (2f 

3
)

H
 

which in view of (4.2) yields 

(f 
H
)

3
 + (f 

H
)

3
 = (2f 

3
)

H 

i.e., 

(f 
H
)

3
 = (f 

3
)

H
. 

Continuing this process and replacing g by f
4
, f

 5
, f

 6
, f

 7
, f

 8
, f

 9
, we get 
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    (f 
H
)

10
 = (f 

10
)

H
. 

Also, 

    (f 
H
)

9
 = (f 

9
)

H
   (4.3) 

And 

    (f 
H
)

11
 = (f 

11
)

H
   (4.4) 

 

Since f is a f(11, 9)-structure on M
n
, therefore 

f
11 

– 
2
f
 9
 = 0.  

Hence, from (4.3) and (4.4), we get 

(f 
H
)

11
 = (f 

11
)

H
 = 

2
 (f 

9
)

H
 = 

2
(f 

H
)

9 

Or 

    (f 
H
)

11
 – 

2
 (f 

H
)

9
 = 0. 

Thus, f 
H
 is a f (11,9)-structure on T

*
(M

n
).  

5. Prolongation of a f(11, 9)-structure in second tangent space T2(M 
n
) 

Let us denote T2(M
n
), the second order tangent bundle over M

n
 and let f

 H
 be the second lift on f in T2(M

n
). 

Then, we have for any f, g  (M
n
)), the following holds 

   (g
 II

 f 
II
)X

II 
= g

 II
(f 

II 
X

II
) 

     = g
 II

(f 
 
X)

II 

     
= (g (f

 
X))

II 

     
= (g f)

II 
X

II
  (5.1) 

for every X  (M
n
), therefore we have 

   g
 II

 f 
II 

= (g f)
II  

= g
 II

(f 
II 

X
II
) 

If P(t) denotes a polynomial of variable t, then we have 

(P(f))
II
 = P(f)

II
,    (5.2) 

where f  (M
n
),. 

Theorem 5.1. The second lift f
II
 defines a f(11,9)-structure in T2(M

n
), if and only if f defines a f (9,7)-

structure in M
n
. 

Proof. Let f satisfy (1.3), then f defines a f(11,9)-structure in M
n 
satisfying 

f
 11

 – 
2
f
 9
 = 0,  

which in view of equation (5.2) takes the form 

(f 
II
)f

 11
 – 

2
(f 

II
)

 9
 = 0.  (5.3)  

Therefore, f 
II
 defines a f (11,9)-structure on T2(M

n
).  

Theorem 5.2. The second lift f 
II
 is integrabte in T2(M

n
) if and only if f is integrable in M

n
. 

Proof. Let us denote N
II
 and N, the Nijenhuis tensors of f 

II
 and f respectively. Then we have [6] 

N
II
(X, Y) = (N(X, Y))

II
.   (5.4) 

We know that f(11, 9)-structure is integrable in M
n
 if and only if 

   N(X, Y) = 0 

which in view of (5.4) is equivalent to 

N
II
(X, Y) = 0.    (5.5) 

Thus, N
II
 is integrable if and only if f is integrable in M

n
.  
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Theorem 5.3. The second lift f
II
 off is partially integrable in T2(M

n
) if and only if f is partially integrable 

in M
n
. 

Proof. We know that for f to be partially integrable in M
n
, the following holds 

    N(l
*
 X, l

*
 Y) = 0 

and 

    N(m
*
 X, m

*
 Y) = 0. 

which in view of equation (5.4) takes form 

N
II
((l

*
)

II 
X

II
, (l

*
)

II 
Y

II
) = 0   (5.6) 

and 

N
II
((m

*
)

II
 X

II
, (m

*
)

II
 Y

II
) = 0,      (5.7) 

where (l
*
)

II
 and (m

*
)

II
 are operators in T2(M

n
) which defines the distributions (L*)

II
 and (M

*
)

II
 respectively. 

Thus, the equations (5.6) and (5.7) gives the condition for f 
II
 to be partially integrable. The converse of 

theorems 5.2 and 5.3 follows in the similar manner.  

6. Integrability conditions of f-structure in a tangent bundle 

Let f  (M
n
), then the Nijenhuis tensor Nf of f satisfying equation (1.5) is a tensor field of type (1, 2) 

given by [3] 

Nf(X, Y) = [fX, fY] – f[f X, Y] – f[X, fY] + f
 2
[X, Y].  (6.1) 

Let N
C
 be the Nijenhuis tensor of f

C
 in T(M

n
) of f in M

n
, then we have 

N
C
(X

C
, Y

C
)  = [f

C 
X

C
, f

C 
Y

C
] – f

C
[f

C 
X

C
, Y

C
] – f

C
[X

C
, f

C 
Y

C
]  

+ (f 
2
)

C
[X

C
, Y

C
].    (6.2) 

For any X, Y  (M
n
) and f  (M

n
), we have 

[X
C
, Y

C
] = [X, Y]

C
 and [X + Y]

C
 = X

C
 + Y

C
, (6.3) 

f
C 

X
C
 = (f X)

C
.   (6.4) 

From (1-8) and (6.4), we have 

f 
C 

m
C
 = (f m)

C
 = 0.  (6.5)  

Theorem 6.1. The following identities hold, 

N
C
(m

C 
X

C
, m

C 
Y

C
) = (f 

C
)

2
[m

C 
X

C
, m

C 
Y

C
],  (6.6) 

m
C 

N
C
(X

C
, Y

C
) = m

C
[f 

C 
X

C
, f 

C 
Y

C
] (6.7) 

m
C
 N

C 
(l 

C 
X

C
, l

C 
Y

C
) = m

C 
[f 

C 
X

C
, f 

C
, Y

C
]  (6.8) 

m
C 

N
C
((f)

9 
X

C
, (f 

C
)

9 
Y

C
] = m

c
[l

C 
X

C
, l

C 
Y

C
].  (6.9) 

Proof. From equations (1.8), (1-9), (6.2) and (6.5) theorem can be proved easily.  

Theorem 6.2. The following identities hold. 

(i) m
C
 N

C
 (X

C
, Y

C
) = 0,  

(ii) m
C
 N

C 
(l 

C 
X

C
, l

C 
Y

C
) = 0.  

(iii) m
C 

N
C
((f 

C
)

9 
X

C
,(f 

C
)

9 
Y

C
) = 0. 

Proof. In consequence of equation (6. 2), (1.8) and (1.9) it can be easily proved that m
C 

N
C
(l

C 
X

C
, l

C 
Y

C
) = 

0 if and only if m
C 

N
C 

((f
C
)

9
X

C
, (f

C
)

9
 Y

C
) = 0 for all X, Y  (M

n
]. Now right hand side of the equations (6.7) 

and (6.8) are equal, which in view of equation (6.9) shows that above conditions are equivalent.  

Theorem 6.3. The complete lift of M
c
 of the. distribution M in T(M

n
) is integrable if and only if M is 

integrable in M
n
. 

Proof. It is known that the distribution M is integrable in M
n
 if and only if 

l[mX, mY] = 0,  for any X, Y  (M
n
).  (6.10) 

Taking complete lift of both sides, we get 
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l
C
[m

C 
X

C
, m

C 
Y

C
] = 0,   (6.11) 

where l
C
 = (m – I)

 C
 = I – m

c
 is the projection tensor complementary to m

C
. Thus, the conditions (6.10) 

and (6.11) are equivalent.  

Theorem 6.4. For any X, Y  (M
n
), let the distribution M be integrable in T(M

n
) is integrable if and only if 

N(m X, mY) = 0.  

Then the distribution M
c
 is integrable in T(M

n
) if and only if 

l
C
[m

C 
X

C
, m

C 
Y

C
] = 0 

Or equivalently  

N
C
[m

C 
X

C
, m

C 
Y

C
] = 0. 

Proof. By virtue of condition (6.6), we have 

N
C
(m

C 
X

C
, m

C 
Y

C
) = (f 

C
)

2
[m

C 
X

C
, m

C 
Y

C
].  

Multiplying throughout by l
C
, we get 

l
C 

N
C
(m

C 
X

C
, m

C 
Y

C
) = (f

C
)

2
[m

C 
X

C
, m

C 
Y

C
],  

which in view of (6.11) becomes 

l
C 

N
C
(m

C 
X

C
, m

C 
Y

C
) = 0.   (6.12) 

Also we have 

m
C 

N
C
(m

C 
X

C
, m

C 
Y

C
) = 0.  (6.13) 

Adding (6.10) and (6.13), we obtain 

(l
C 

+ m
C
) N

C
 (m

C 
X

C
, m

C 
Y

C
] = 0,  

since l
C
 + m

C
 = I

C
 = I, we have 

   N
C
 (m

C
 X

C
, m

C
 Y

C
) = 0. 

Theorem 6.5. For any X, Y  (M
n
), let the distribution M be integrable in M

n
 is integrable if and only if 

    N(lX, lY) = 0. 

Then the distribution L
C
 is integrable in T(M

n
) if and only if 

m
C 

[l
C 

X
C
, l

C 
Y

C
]= 0. 

or equivalently 

N
C
(l

C 
X

C
, l

C 
Y

C
) = 0. 

Proof. Proof follows easily in a way similar to that of the Theorem 6.4.  

Now, we define following 

(i)   . Distribution L is integrable  

(ii)  . Arbitrary vector field Z is tangent to an integral manifold of L.  

(iii) . The operator f
*
, such that f

*
Z = f Z. 

In view of equation (1.8) and (1.9) the induced structure f
*
 of f is an almost complex structure on each 

integral manifold L and f makes tangent spaces invariant of every integral manifold of L. 

Definition 6.6. The f-structure is partially integrable if the distribution L is integrable and the almost 

complex structure f
*
 induced from f on each integral manifold of L is also integrable. 

Let us denote the vector valued 2-form N
*
(Z,W) of the Nijenhuis tensor corresponding to the Nijenhuis 

tensor of the almost complex structure induced from f-structure on each integral manifold of L and for any 

Z W  (M
n
) tangent to an integral manifold of L. Then we have 

 N(Z, W) = [f
*
 Z, f

*
W] – f

*
[f

*
 Z, W] – f

*
[Z, f

*
W]+f

*2
 [Z,W]. (6.14) 

which in view of (6.2) and (6.12) yields 



AJMI                                          Vol.07 Issue-01, (Jan-July, 2015)                    ISSN: 2394-9309 
Aryabhatta Journal of Mathematics and Informatics (Impact Factor- 4.1) 

 

     Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 

Aryabhatta Journal of Mathematics and Informatics 
                                         http://www.ijmr.net.in email id- irjmss@gmail.com  Page 92 

N
C
(l

C 
X

C
, l

C 
Y

C
) = (N

*
)

C
(l

 C
 X

 C
, l

C 
Y

C
).   (6.15) 

Theorem 6.7. For any X, Y  (M
n
), let the f-structure he partially integrable i.e., 

N(lX, lY) = 0. 

Then the necessary and sufficient condition for f-structure to be partially integrable in T(M
n
) is 

N
C
(l

C 
X

C
, l

C 
Y 

C
) = 0 

Proof. In view of the equations (1.8); (1.9) (6.2), (6.15) and Theorem 6.5, the result follows easily.  

When both the distributions L and M are integrable, we can choose a local coordinate system such that all 

L and M represented by putting (n – r) local coordinates and r-coordinates constant respectively. We call 

such a coordinate system an adapted coordinate system. It can be supposed that in an adapted coordinate 

system the projection operator I and m have the components of the form 

   l = ,  m = , 

respectively. Where Ir denotes the unit matrix of order r and In - r is of order (n – r). Since f satisfies 

equation (1-8), the f has components of the form 

   f =  

in an adapted coordinate system where fr denotes r  r square matrix. 

Definition 6.8.  We say that an f-structure is integrable if: 

(i). The structure f is partially integrable.  

(ii). The distribution M is integrable i.e., N(mX, mY) = 0.  

(iii). The components of the f-structure are independent of the coordinates which are constant along 

the integral manifold of L in a adapted system. 

Theorem 6.9. For any X, Y  (M
n
), let the f-structure be inte-grable in M

n
 if and only if 

    N(X, Y) = 0 

Then the necessary and sufficient condition for f-structure to be integrable in T(M
n
) is 

N
C
(X

C
, Y

C
)= 0. 

Proof. In view of the equations (6.1) and (6.2), we get 

Since f-structure is integrable in M
n
. Therefore, the result follows.  
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