ON HORIZONTAL AND COMPLETE LIFTS OF (1, 1) TENSOR FIELD f SATISFYING STRUCTURES $f^{11} - {}^2f^9 = 0$ AND $f^{10} - f = 0$

RAM SWAROOP, DEAPARTMENT OF MATHEMATICS, NIMS UNIVERSITY, JAIPUR, RAJASTHAN.

Abstract. The horizontal and complete lifts from a differentiable manifold of class C^{∞} to its cotangent bundle $T^*(M^n)$ have been studied by Yano and Patterson [4, 5]. Yano and Ishihara [6] studied lifts of an *f*-structure in the tangent and co-tangent bundle. *f*-structures manifolds of degree 8 have been studied by Kim, J.B. [2]. The present paper deals with some problems on horizontal arid complete lifts of structures mentioned above in tangent and co-tangent bundles and the prolongation in the second tangent space $T_2(M^n)$. Integrability conditions of *f*-structure manifolds of degree 10 in tangent bundle have also been discussed.

1. Preliminaries

Let M^n be *n*-dimensional differentiable manifold of class C^{∞} . Let $T^*(M^n)$ be the co-tangent bundle of M^n . Then $T^*(M^n)$ is also a differentiable manifold of class C^{∞} and of dimension 2n. Throughout this chapter, we make use of the following notations and conventions:

- (i) The map π : $T^*(M^n)$ M^n is the projection map of $T^*(M^n)$ onto M^n .
- (ii) Suffixes a, b, c,...., h, i, j take the values of 1 to n and = i + n. Suffixes A, B, C,..... take the values 1 to 2n.
- (iii) (M^n) is the set of tensor fields of class C^{∞} and type (r, s) on M^n . Similarly, $(T^*(M^n))$ denotes such tensor fields in $T^*(M^n)$.

2000 Mathematics Subject Classification. 53C15, 57R55.

Key words and phrases. $f^{11} - f^{22} = 0$ and $f^{10} - f = 0$ structures, distribution, integrability.

(iv) Vector fields in M^n are denoted by X, Y, Z,... and their Lie derivative by L_X . The Lie product of X and Y is denoted by [X, Y]. If A is a point in M^n , $\pi^{-1}(A) T^*(M^n)$ called fibre over A. Any point $P \pi^{-1}(A)$ can be denoted by ordered pair (A, P_A) , P_A is the value of 1-form p at A. If U be a coordinate neighborhood in M^n with co-ordinates (X^h) , $\pi^{-1}(U)$ is coordinate neighborhood on $T^*(M^n)$ with co-ordinate functions (X^h, P_i) . If P lies in the intersecting region $\pi^{-1}(U) \pi^{-1}(U)$ with co-ordinate functions (X^h, P_i) and $(X^{h'}, P_i)$, then $X^{h'} = X^{h'}(X^h)$ and $= P_i$.

Then we have [5]

$$(X + Y)^C = X^C + Y^C$$
(1.1)

and

$$(f)^{C}(Z)^{C} = (f Z)^{C} + (L_{Z} f)^{V}$$
(1.2)

Let M^n be an *n*-dimensional connected differentiable manifold of class C^{∞} . Let there be given in M^n , a (1, 1) tensor field *f* of class C^{∞} satisfying

 $f^{11} - {}^{2n}f^9 = 0, (1.3)$

where is non-zero complex number. Also,

rank
$$(f) = (\operatorname{rank} f^9 + \dim M^n)$$

= $r(a \text{ constant everywhere on } M^n)$
Let the operators l^* and m^* be defined as
 $l^* = \operatorname{and} m^* = I - ,$ (1.4)

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics

where *I* denotes the identity operator on M^n , Then the operators l^* and m^* applied to the tangent space at a point of the manifold are complementary projection operators. We call such a structure as f(11, 9)-stucture of rank r on M^n .

1.1. Agreement. In what follows we make use of the following results [6]. For any X, Y (M^n) , we have

(i) $[X^{C}, Y^{C}] = [X, Y]$ (ii) $f^{C}X^{C} = [fX]$.

Definition 1.1. Let f be a non-zero tensor field of type (1, 1) and of class C^{∞} on an n-dimensional manifold M^n such that [2]

$$f^{10} - f = 0, (1.5)$$

where rank of f is constant everywhere and equal to r.

Let the operators on M^n be defined as follows [2]

$$l = f^9 \text{ and } m = I - f,$$
 (1.6)

where I denotes the identity operator. From the operators denned by (1.6), we have

(1.7)

For *f* satisfying (1.5), there exist complementary distributions *L* and *M* corresponding to the projection operators *l* and *m* respectively. If rank(*f*) be *r*. constant on M^n then dimL = r and dimM = n - r. We have the following results:

$$f l = l f = f \text{ and } f m = m f = 0,$$
 (1.8)
 $f l = l \text{ and } f m = 0.$ (1.9)

Let us call such a structures as *f*-structure of degree 10.

2. The complete of *f* in the tangent bundle $T(M^n)$

The complete lift of f^{C} of an element of (M^{n}) with local component of has components of the form $f^{C} = (2.1)$

Now, we prove some theorems on the complete lifts of f(11-, 9)-structure satisfying (1.3) and also its integrability conditions.

Theorem 2.1. The complete lift of (1,1) tensor field f satisfying f(11, 9)-structure in M^n will admit the similar structure in the tangen bundle $T(M)^n$.

Proof. Let f, g (Mⁿ), then we have

$$(fg)^{C} = f^{C}g^{C}.$$
 (2.2)

Putting f = g, we obtain

$$(f^2)^C = (f^C)^2.$$
 (2.3)
Putting $g = f^2$ in (2.2) and making use of (2.3), we get
 $(f^3)^C = (f^C)^2.$ (2.4)

Continuing the above process of replacing g in equation (2.2) by higher degree of f, we obtain $(f^{10})^C = (f^C)^{10}$ and so on.

Taking complete lift on both sides of equation (1.3), we get

$$(f^{11})^C - ({}^2f^9)^C = 0$$

which in view of the equation (2) gives

$$(f^{C})^{11} - {}^{2}(f^{C})^{9} = 0.$$
 (2.5)

Thus, the complete lift of *f* also has f(11, 9)-structure in $T(M^n)$. The complete lift $(l^*)^C$ and $(m^*)^C$ of l^* and m^* are complementary projection tensors in $T(M^n)$. Thus, there exist in $T(M^n)$ two complementary distribution $(L^*)^C$ and $(M^*)^C$ determined by $(l^*)^C$ and $(m^*)^C$ respectively.

Theorem 2.2. The complete lift $(m^*)^C$ of the distribution M^* in $T(M^n)$ is integrable if and only if M^* is integrable in M^n .

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics

Proof. It is well known that the distribution M^* is the integrable in M^n if and only if $l^*[m^* X, m^* Y] = 0.$ (2.6) Taking complete lift of on both side of equation (2.6), we get $(l^*)^C[(m^*)^C X^C, (m^*)^C Y^C] = 0,$ (2.7)

where

$$(l^*)^C = (I - m^*)^C = I - (m^*)^C$$
, as $I^C = I$.

In consequence of equation (2.7), $(m^*)^C$ is integrable in $T(M^n)$.

Theorem 2.3. The complete lift $(l^*)^C$ of the distribution L^* in $T(M^n)$ is integrable if and only if L^* is integrable in M^n .

Proof. Proof is same as that of the theorem 2.2.

Theorem 2.4. The structure f^{c} is partially integrable if and only if f is partially integrable in M^{n} .

Proof. We know that f is partially integrable if and only if

$$N(l^*X, l^*Y) = 0.$$

Taking complete lift on both sides, we obtain

$$N((l^*)^C X^C, (l^*)^C Y^C) = 0.$$

Hence,
$$f^{C}$$
 is partially integrable if and only if f is partially integrable in M^{n}

Theorem 2.5. For any X, Y (M^n) , let f be integrable in M^n . Thus, f^c is integrable m $T(M^n)$ if and only if $N^c(X^c, Y^c) = 0$.

(2.8)

(2.9)

Proof. We know that *f* is integrable if and only if

$$N(X, Y) = 0,$$
 (2.10)

where N(X, Y) is the Nijenhuis tensor of f satisfying (1.3) and it is given by [6]

$$N_{f,f}(X, Y) = [fX, fY] - f[fX, Y] - f[X, fY] + f^{2}[X, Y].$$
(2.11)

Taking complete lift on both sides, we have

$$N^{C}(X^{C}, Y^{C}] = [f^{C}X^{C}, f^{C}Y^{C}] - f^{C}[f^{C}X^{C}, Y^{C}] - f^{C}[X^{C}, fY^{C}] + (f^{2})^{C}[X^{C}, Y^{C}].$$
(2.12)

Also, taking complete lift of (2.10), we get

$$N^C(X^C, Y^C) = 0,$$

which in view of equation (2,11) and (2.12) and the fact f is integrable in M^n shows that f^c is integrable in $T(M^n)$.

3. The complete lift of f(11, 9)-structure in cotangent bundle

In this section, we prove some theorems on complete lift of f satisfying f(11, 9)-structure.

Theorem 3.1. The Nijenhuis tensor of the complete of f^{11} vanishes if the lie derivative of the tensor field f^{11} with respect to X and Y are both zero and f is an almost -structure on M^n .

Proof. In consequence of (2.11), the Nijenhuis tensor of $/^n$ is given by

$$(X^{C}, Y^{C}) = [(f^{11})^{C} X)^{C}, (f^{11})^{C} Y)^{C}] - (f^{11})^{C} [(f^{11})^{C} X^{C}, X^{C}] - (f^{11})^{C} [X^{C}, (f^{11})^{C} Y^{C}] + (f^{11})^{C} (f^{11})^{C} [X^{C}, X^{C}]$$
(3.1)

which in view of (1.3) takes the form

$$(X^{C}, Y^{C}) = {}^{4}[(f^{9})^{C} X^{C}, (f^{9})^{C} Y)^{C}] - {}^{4}(f^{9})^{C} [(f^{9})^{C} X^{C}, X^{C}] - {}^{4}(f^{9})^{C} [X^{C}, (f^{9})^{C} Y)^{C}] + {}^{4}(f^{9})^{C} (f^{9})^{C} [X^{C}, X^{C}]$$
(3.2)

In consequence of (1.2), we have

 $(f^{9})^{C} X^{C} = (f^{9} X)^{C} + (L_{X} f^{9})^{V}.$ (3.3)

Hence, we get

$$(X^{C}, Y^{C}) = {}^{4} \{ [f^{9}X)^{C}, (f^{9})Y)^{C}] + [(L_{X}f^{9})^{V}, (f^{9}Y)^{V}]$$

+ $[(f^{9}X)^{C}, (L_{Y}f^{9})^{V}] + [(L_{X}f^{9})^{V}, (L_{Y}f^{9})^{V}]$
- $(f^{9})^{C} [(f^{9}X)^{C}, Y^{C}] - (f^{9})^{C} [(L_{X}f^{9})^{V}, Y^{C}]$
- $(f^{9})^{C} [(X^{C}, (f^{9}Y)^{C} - (f^{9})^{C} [X^{C}, (L_{Y}f^{9})^{V}]$
+ $(f^{9})^{C} (f^{9})^{C} [(X^{C}, Y^{C}] \}.$ (3.4)

If the lie derivatives of the tensor field f^9 with respect to X and Y are both zero, we have $L_X f = 0$ and $L_Y f = 0$.

Therefore, equation (3.4) takes the form

$$(X^{C}, Y^{C}) = {}^{4} \{ [f^{9}X)^{C}, (f^{9}Y)^{C} - (f^{9})^{C} [(f^{9}X)^{C}, Y^{C}] - (f^{9})^{C} [X^{C}, (f^{9}Y)^{C}] + (f^{9})^{C} (f^{9})^{C} [(X^{C}, Y^{C}]] \}.$$
(3.5)

$$(X^{C}, Y^{C}) = {}^{4} \{ [f^{9}X, f^{9}Y]^{C} - (f^{9})^{C} [f^{9}X, Y]^{C} - (f^{9})^{C} [X^{C}, f^{9}Y]^{C} + (f^{9})^{C} (f^{9})^{C} [X^{C}, Y]^{C} \}.$$
(3.6)

Let f be an almost -structure on M^n , then $f^2 = {}^2 I$, where I is the unit tensor field. Hence, $f^9 = I$ and therefore (3.6) takes the form

$$(X^{C}, Y^{C}) = {}^{4} \{ [X, Y]^{C} - [X, Y] - [X, Y]^{C} + [X, Y]^{C} \} = 0$$

Theorem 3.2. The Nijenhuis tensor of the complete of f^{11} is equal to ⁴ multiplied by the complete lift of the Nijenhuis tensor of f^{11} if

i. $L_X f^9 = 0, L_Y f^9 = 0,$ ii. $[X, Y]^C = 0, = 0,$ where $= f^9 + f^9 - f^{18}$. **Proof.** In view of equation (1.1) and (2.11), we have $= (X, Y)^C = [f^9 X, f^9 Y]^C - (f^9 [f^9 X, Y])^C$ $- (f^9 [X, f^9 Y]^C + (f^{18} [X, Y])^C,$ (3.7) which on account of (3.3) yields $= (X, Y)^C = [f^9 X, f^9 Y]^C - (f^9)^C [f^9 X, Y]^C$ $- [f^9]^V - (f^9)^C [X, f^9 Y]^C$ $- [f^9]^V - (f^{18})^C [X, Y]^C - [f^{18}]^V.$

But, we have [6]

 $(f^{9})^{C} (f^{9})^{C} = (f^{18})^{C} + ()^{V}.$ (3.8)Hence in view (3.8), the equation (3.7) becomes $(X, Y)^{C} = [f^{9} X, f^{9} Y]^{C} - (f^{9})^{C} [f^{9} X, Y]^{C}$ $- (f^{9})^{C} [X, f^{9} Y]^{C} - (f^{18})^{C} [X, Y]^{C}$ $- [f^{9}]^{V} - [f^{9}]^{V} - [f^{18}]^{V}.$ (3.9) (3.9) Now, from (3.8), we have $(f^{18})^C = (f^9)^C (f^9)^C - (f^V)^V$ Thus. $(X, Y)^{C} = [f^{9} X, f^{9} Y]^{C} - (f^{9})^{C} [f^{9} X, Y]^{C}$ $- (f^{9})^{C} [X, f^{9} Y]^{C} - (f^{9})^{C} (f^{9})^{C} [X, Y]^{C}$ $- ()^{V} [X, Y]^{C} - [f^{9}]^{V}$ $- [f^{9}]^{V} - [f^{18}]^{V}.$ (3.10) In view of the equation (3.10), the equation (3.5) takes the form $(X^{C}, Y)^{C} = {}^{4} \{ (X, Y)^{C} + ()^{V} [X, Y]^{C} - \{ f^{9} + f^{9} + [f^{18}]^{V} \}.$ In consequence of (), we have $= {}^{4} \{ (X, Y)^{C} + ()^{V} [X, Y]^{C} \} - 1 .$ $(X^{C}, Y)^{C}$ (3.11)Let $[X, Y]^{C} = 0$ and = 0, the (3.11) reduce to $(X^{C}, Y)^{C} = {}^{4} ((X, Y)^{C}).$

Theorem 3.3. The Nijenhuis tensor of the complete of f^{11} is equal to the complete lift of the Nijenhuis tensor of f^{11} if

i.
$$L_X f^9 = 0,$$
 $L_Y f^9 = 0$
ii. $L_X Y = 0,$ $= 0.$

Proof. Since $[X, Y]^{C} = 0$ implies that [X, Y] = 0 or $L_{X}Y = 0$. Therefore from (3.2), the results follows. **Theorem 3.4.** The process of computing the Nijenhuis tensor of f^{9} and taking complete lift are commutative.

Proof. Theorem follows easily from the equation (3.1) and theorem 3.3.

4. The horizontal lift of a *f*(11,9)-structure

In this section, we prove theorem on horizontal lift satisfying the structure (1.3).

Theorem 4.1. Let $f(M^n)$ be a f(11,9) -structure in M^n , then the horizontal lift f^H off is also f(9, 7)-structure on $T^*(M^n)$.

Proof. For every *f*, *g* (*M*^{*n*}), we have [6] $f^{H}g^{H} + g^{H}f^{H} = (fg + gf)^{H}$ (4.1)

Putting g = f, we get

$$2(f^{H})^{2} = (2f^{2})^{H}$$

or

$$(f^{H})^{2} = (f^{2})^{H}$$
(4.2)

Replacing g by f^2 in (4.1), we get

$$(f^{H}) (f^{2})^{H} + (f^{2}) (f^{H}) = (2f^{3})^{H}$$

 $(f^{H})^{3} = (f^{3})^{H}$

which in view of (4.2) yields

$$(f^{H})^{3} + (f^{H})^{3} = (2f^{3})^{H}$$

i.e.,

Continuing this process and replacing
$$g$$
 by f^4 , f^5 , f^6 , f^7 , f^8 , f^9 , we get

Also,

And

 $(f^{H})^{10} = (f^{10})^{H}.$ $(f^{H})^{9} = (f^{9})^{H}$ (4.3)

 $(f^{H})^{11} = (f^{11})^{H}$ (4.4)

Since f is a f(11, 9)-structure on M^n , therefore

$$f^{11} - f^9 = 0$$

Hence, from (4.3) and (4.4), we get

$$(f^{H})^{11} = (f^{11})^{H} = {}^{2} (f^{9})^{H} = {}^{2} (f^{H})^{9}$$

Or

$$(f^{H})^{11} - {}^{2} (f^{H})^{9} = 0.$$

Thus, f^H is a f (11,9)-structure on $T^*(M^n)$.

5. Prolongation of a f(11, 9)-structure in second tangent space $T_2(M^n)$

Let us denote $T_2(M^n)$, the second order tangent bundle over M^n and let f^H be the second lift on f in $T_2(M^n)$. Then, we have for any f, $g(M^n)$), the following holds

$$(g^{II} f^{II})X^{II} = g^{II}(f^{II} X^{II})$$

= $g^{II}(f X)^{II}$
= $(g (f X))^{II}$
= $(g f)^{II} X^{II}$ (5.1)

for every X (Mⁿ), therefore we have

$$g^{II}f^{II} = (gf)^{II} = g^{II}(f^{II}X^{II})$$

If P(t) denotes a polynomial of variable t, then we have

(

$$P(f))^{II} = P(f)^{II},$$
 (5.2)

where $f(M^n)$,.

Theorem 5.1. The second lift f^{II} defines a f(11,9)-structure in $T_2(M^n)$, if and only if f defines a f(9,7)-structure in M^n .

Proof. Let f satisfy (1.3), then f defines a f(11,9)-structure in M^n satisfying

$$f^{11} - {}^2f^9 = 0,$$

which in view of equation (5.2) takes the form

$$(f^{II})f^{11} - {}^{2}(f^{II})^{9} = 0.$$
 (5.3)

Therefore, f^{II} defines a f(11,9)-structure on $T_2(M^n)$.

Theorem 5.2. The second lift f^{II} is integrable in $T_2(M^n)$ if and only if f is integrable in M^n .

Proof. Let us denote N^{II} and N, the Nijenhuis tensors of f^{II} and f respectively. Then we have [6]

$$N^{II}(X, Y) = (N(X, Y))^{II}.$$
(5.4)

We know that f(11, 9)-structure is integrable in M^n if and only if

$$V(X, Y) = 0$$

which in view of (5.4) is equivalent to

$$N^{II}(X, Y) = 0.$$

Thus, N^{II} is integrable if and only if f is integrable in M^n .

(5.5)

Theorem 5.3. The second lift f^{II} off is partially integrable in $T_2(M^n)$ if and only if f is partially integrable in M^n .

Proof. We know that for f to be partially integrable in M^n , the following holds

 $N(l^* X, l^* Y) = 0$

and

 $N(m^* X, m^* Y) = 0.$

which in view of equation (5.4) takes form

$$N^{II}((l^*)^{II}X^{II}, (l^*)^{II}Y^{II}) = 0$$
(5.6)

and

$$N^{II}((m^*)^{II} X^{II}, (m^*)^{II} Y^{II}) = 0, (5.7)$$

where $(l^*)^{II}$ and $(m^*)^{II}$ are operators in $T_2(M^n)$ which defines the distributions $(L^*)^{II}$ and $(M^*)^{II}$ respectively. Thus, the equations (5.6) and (5.7) gives the condition for f^{II} to be partially integrable. The converse of theorems **5.2** and **5.3** follows in the similar manner.

6. Integrability conditions of *f*-structure in a tangent bundle

Let $f(M^n)$, then the Nijenhuis tensor N_f of f satisfying equation (1.5) is a tensor field of type (1, 2) given by [3]

 $N_f(X, Y) = [fX, fY] - f[fX, Y] - f[X, fY] + f^2[X, Y].$ (6.1) Let N^C be the Nijenhuis tensor of f^C in $T(M^n)$ of f in M^n , then we have

$$N^{C}(X^{C}, Y^{C}) = [f^{C}X^{C}, f^{C}Y^{C}] - f^{C}[f^{C}X^{C}, Y^{C}] - f^{C}[X^{C}, f^{C}Y^{C}] + (f^{2})^{C}[X^{C}, Y^{C}].$$
(6.2)

For any X, Y (M^n) and $f(M^n)$, we have

$$[X^{C}, Y^{C}] = [X, Y]^{C} \text{ and } [X + Y]^{C} = X^{C} + Y^{C}, \qquad (6.3)$$
$$f^{C} X^{C} = (f X)^{C}. \qquad (6.4)$$

From (1-8) and (6.4), we have

$$f^{C}m^{C} = (fm)^{C} = 0.$$
 (6.5)

Theorem 6.1. The following identities hold,

$$N^{C}(m^{C}X^{C}, m^{C}Y^{C}) = (f^{C})^{2}[m^{C}X^{C}, m^{C}Y^{C}],$$
(6.6)

$$m^{C}N^{C}(X^{C}, Y^{C}) = m^{C}[f^{C}X^{C}, f^{C}Y^{C}]$$
(6.7)

$$m^{C}N^{C}(l^{C}X^{C}, l^{C}Y^{C}) = m^{C}[f^{C}X^{C}, f^{C}, Y^{C}]$$
(6.8)

$$m^{C}N^{C}((f)^{9}X^{C}, (f^{C})^{9}Y^{C}] = m^{c}[l^{C}X^{C}, l^{C}Y^{C}].$$
(6.9)

Proof. From equations (1.8), (1-9), (6.2) and (6.5) theorem can be proved easily.

Theorem 6.2. *The following identities hold.*

- (i) $m^{C} N^{C} (X^{C}, Y^{C}) = 0,$
- (ii) $m^{C} N^{C} (l^{C} X^{C}, l^{C} Y^{C}) = 0.$

(iii)
$$m^{C}N^{C}((f^{C})^{9}X^{C},(f^{C})^{9}Y^{C}) = 0.$$

Proof. In consequence of equation (6. 2), (1.8) and (1.9) it can be easily proved that $m^C N^C (l^C X^C, l^C Y^C) = 0$ if and only if $m^C N^C ((f^C)^9 X^C, (f^C)^9 Y^C) = 0$ for all $X, Y (M^n]$. Now right hand side of the equations (6.7) and (6.8) are equal, which in view of equation (6.9) shows that above conditions are equivalent.

Theorem 6.3. The complete lift of M^c of the. distribution M in $T(M^n)$ is integrable if and only if M is integrable in M^n .

Proof. It is known that the distribution M is integrable in M^n if and only if

l[mX, mY] = 0, for any X, Y (M^n). (6.10)

Taking complete lift of both sides, we get

 $l^{C}[m^{C}X^{C}, m^{C}Y^{C}] = 0,$ (6.11) where $l^{C} = (m - I)^{C} = I - m^{c}$ is the projection tensor complementary to m^{C} . Thus, the conditions (6.10) and (6.11) are equivalent.

Theorem 6.4. For any X, Y (M^n) , let the distribution M be integrable in $T(M^n)$ is integrable if and only if N(m X, mY) = 0.

Then the distribution M^c is integrable in $T(M^n)$ if and only if $l^c[m^C X^C, m^C Y^C] = 0$

Or equivalently

$$N^C[m^C X^C, m^C Y^C] = 0.$$

Proof. By virtue of condition (6.6), we have

$$N^{C}(m^{C}X^{C}, m^{C}Y^{C}) = (f^{C})^{2}[m^{C}X^{C}, m^{C}Y^{C}].$$

Multiplying throughout by l^{C} , we get

$$V^{C}(m^{C}X^{C}, m^{C}Y^{C}) = (f^{C})^{2}[m^{C}X^{C}, m^{C}Y^{C}],$$

which in view of (6.11) becomes

 $l^{C} N^{C} (m^{C} X^{C}, m^{C} Y^{C}) = 0.$ (6.12)

Also we have

$$m^{C}N^{C}(m^{C}X^{C}, m^{C}Y^{C}) = 0.$$
 (6.13)

Adding (6.10) and (6.13), we obtain

$$(l^{C} + m^{C}) N^{C} (m^{C} X^{C}, m^{C} Y^{C}] = 0,$$

since $l^C + m^C = I^C = I$, we have

$$(m^C X^C, m^C Y^C) = 0.$$

Theorem 6.5. For any X, Y (M^n) , let the distribution M be integrable in M^n is integrable if and only if

N(lX, lY) = 0.Then the distribution L^{C} is integrable in $T(M^{n})$ if and only if $m^{C}[l^{C}X^{C}, l^{C}Y^{C}] = 0.$

 N^{C}

or equivalently

$$N^C(l^C X^C, l^C Y^C) = 0.$$

Proof. Proof follows easily in a way similar to that of the Theorem 6.4.

Now, we define following

- (i) . Distribution L is integrable
- (ii) . Arbitrary vector field Z is tangent to an integral manifold of L.
- (iii) . The operator f^* , such that $f^*Z = fZ$.

In view of equation (1.8) and (1.9) the induced structure f^* of f is an almost complex structure on each integral manifold L and f makes tangent spaces invariant of every integral manifold of L.

Definition 6.6. The *f*-structure is partially integrable if the distribution *L* is integrable and the almost complex structure f^* induced from *f* on each integral manifold of *L* is also integrable.

Let us denote the vector valued 2-form $N^*(Z, W)$ of the Nijenhuis tensor corresponding to the Nijenhuis tensor of the almost complex structure induced from *f*-structure on each integral manifold of *L* and for any Z W (M^n) tangent to an integral manifold of *L*. Then we have

 $N(Z, W) = [f^* Z, f^* W] - f^* [f^* Z, W] - f^* [Z, f^* W] + f^{*2} [Z, W].$ (6.14) which in view of (6.2) and (6.12) yields

(6.15)

 $N^{C}(l^{C}X^{C}, l^{C}Y^{C}) = (N^{*})^{C}(l^{C}X^{C}, l^{C}Y^{C}).$

Theorem 6.7. For any X, $Y(M^n)$, let the f-structure he partially integrable i.e.,

N(lX, lY) = 0.Then the necessary and sufficient condition for f-structure to be partially integrable in $T(M^n)$ is $N^C(l^C X^C, l^C Y^C) = 0$

Proof. In view of the equations (1.8), (1.9) (6.2), (6.15) and Theorem 6.5, the result follows easily.

When both the distributions L and M are integrable, we can choose a local coordinate system such that all L and M represented by putting (n - r) local coordinates and r-coordinates constant respectively. We call such a coordinate system an adapted coordinate system. It can be supposed that in an adapted coordinate system the projection operator I and m have the components of the form

 $l = , \qquad m = ,$

respectively. Where I_r denotes the unit matrix of order r and I_{n-r} is of order (n - r). Since f satisfies equation (1-8), the f has components of the form

f =

in an adapted coordinate system where f_r denotes r r square matrix.

Definition 6.8. We say that an f-structure is integrable if:

- (i). *The structure f is partially integrable.*
- (ii). The distribution M is integrable i.e., N(mX, mY) = 0.
- (iii). The components of the f-structure are independent of the coordinates which are constant along the integral manifold of L in a adapted system.

Theorem 6.9. For any X, $Y(M^n)$, let the f-structure be inte-grable in M^n if and only if

$$N(X, Y) = 0$$

Then the necessary and sufficient condition for f-structure to be integrable in $T(M^n)$ is

 $N^{C}(X^{C}, Y^{C}) = 0.$ **Proof.** In view of the equations (6.1) and (6.2), we get

Since *f*-structure is integrable in M^n . Therefore, the result follows.

Acknowledgement

The authors are grateful to Prof. Ram Nivas, Head of the Department of Mathematics and Astronomy, Lucknow University, for his guidance in the preparation of this paper.

References

- [1] **Yano, K. and** Ishihara, S-, *On integrability of a structure F satisfying* $F^3 + F = 0$, Quart J. Math., Oxford, Vol. 25, 217-222(1964).
- [2] Kim, J.B., *Notes on f -manifold.*, Tensor, N.S. Volume 29, 299-302(1975).
- [3] Nivas, **R. and Srivastava, S.K.**, *On horizontal and complete lifts from a manifold with f*(7, –1)*structure to its co-tangent bundle.*, JTSI, India, Vol. 14, 42-48(1996).
- [4] **Yano, K. and Patterson,** E.M., *Vertical and complete lifts from a manifold to its co-tangent bundles,* Journal Math. Soc. Japan, Vol. 19, No.1, 91-113(1967).
- [5] **Yano, K. and Patterson,** E.M., *Horizontal lift from a manifold to its co-tangent bundles,* Journal Math. Soc. Japan, Vol. 19, No.2, 185-188 (1967).
- [6] **Yano, K. and Ishihara,** S., *Tangent and Co-tangent Bundles* Marcel Dekker, Inc., New York (1973).
- [7] **Mishra, R.S.,** *Structures on a differentiate manifold and their applications*, Chandrama Prakashan, 50- A, Balrampur House, Allahabad, India (1984).
- [8] **Hicks, N.J.**, *Notes on differential Geometry*, D. Van Nostrand Company. Inc. Princeton, New York (1965).

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics