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ABSTRACT.In this paper, we consider an unified class of   - spirallike functions of complex order. 

Necessary and sufficient condition for functions to be in this class is obtained.Some of our results 

generalize previously known result.  

 

1.INTRODUCTION 

 

 Let A denote the class of all analytic function of the form  

(1.1) n
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in the open unit disc  E = :| |<1z zC . Let 𝑆 be the subclass of A consisting of univalent functions. 

Also, we denote by 
*S , C  and K  the familiar subclasses of A consisting of functions which are 

respectively starlike, convex and close-to-convex in E . Our favorite references of the field are [4, 5] 

which covers most of the topics in a lucid and economical style. 

 

 For /2<</2   , a function 𝑓 ∈ 𝐴 is said to be  -spiral in E  if  
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 Similarly, a function Af  is said to be convex  -spirallike in E  if  
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We denote  -spirallike functions and convex  -spirallike functions respectively by )(SP  and 

)(CSP . If f  is in )(CSP , then it does not follow that )(Ef  is convex or even spirallike in shape. 

Also, we note that functions in )(CSP  need not be univalent whereas functions in )(SP  are 

univalent. 

 Suppose if f  and g  are analytic in E , we say that f  is subordinate to g  written symbolically as 

gf  , if there exist a schwarz function w  in E  such that   Ezzwgzf ,)(=)( . If g  is univalent in 

E , then the subordination is equivalent to (0)=(0) gf  and )()( EE gf  . That is gf   will mean 

that every value taken by f  in E  is also taken by g . 

 Let )(z  be an analytic function with positive real part on  with 0>(0)1,=(0) ' which maps 

the unit disc E  onto a region starlike with respect to 1 which is symmetric with respect to the real axis.  

Let )(* S  be the class of functions in Sf  for which 
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 and )(C  class of functions in Sf  for which  
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The classes )(* S  and )(C  were introduced and studied by Ma and Minda [7]. Analogous to the 

classes )(* S  and )(C , Ravichandran et. al.[10] considered the classes )(
*

bS  and )(
b

C  of complex 

order  {0}\Cbb  which is defined as follows:  

(1.6) ,)(1
)(

)(1
1:=)(*




























 z

zf

z'fz

b
fb  AS  

 and  

(1.7) .)(
)(

)(1
1:=)(














 z

z'f

z''zf

b
fb  AC  

From (1.6) and (1.7) we have 
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);();( b'fzbCf  *S . 

Now, we introduce a more general class of  -spirallike function of complex order ),;( bm  as 

follows. 

 

Definition 1. The class ),;( bm   of functions Af  analytic in E  given by (1.1) and satisfying the 

condition  
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where {0}\/2,<</2 C b  and m  is a positive integer.  

 

 We note that by specializing )(,,, zmb   in the function class ),;( bm  , we obtain several well-

known and new subclasses of analytic functions. Here we list a few of them: 

(i) )(=)0,;
1

1
( bb

z

z  S



 and )(=)1,;

1

1
( bb

z

z  C



, (Al-Oboudi and  Haidan [1] and  

Aouf et.al. [2]). 

(ii) );(=)0,;( *0 bb  S  and );(=)1,;(0 bb  C , (Ravichandran et. al. [10]). 

(iii) )(=1)0,;( *0  S  and )(=1)1,;(0  C (Ma and Minda [7]). 

 

2.MAIN RESULTS 

 To prove our main result, we cite the following lemma.  

Lemma 1.([12])Let   be a convex function defined on 1.=(0),E  Define F(z) by 
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 Let p(z) = 1 + 2

21 zpzp  +..... be analytic in E, then  
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 if and only if for all 1|| s  and 1|| t  we have  

(2.3) 
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Theorem 1. Let )(zF  be defined as in (9) and let )(z  be a convex function in E  with 1=(0) . The 

function ),;( bmf    if and only if for all 1|| s and 1|| t  we have  
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Proof. Let )(zp  be defined by  

(2.5) )(
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 Taking logarithmic derivative of (2.5), we get   
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Since ),,;( bmpf    we have 
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and the result now follows from lemma1.  

 

Corollary 1. Let )(zF  be defined by  
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The function Af  satisfies the condition 
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 if and only if for all 1|| s and 1|| t  we have  
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Proof. In Definition 1, let )(z  be defined by  
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Clearly )(z  is analytic which maps E  onto a convex domain conformally with 1=(0) . Using (1.8) 

together with Theorem 1, proves the result.  

 

Corollary 2. Let )(zF  be defined by  
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The function Af  satisfies the condition 
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Corollary 3. Let )(zF  be defined by  
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The function Af  satisfies the condition 
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if and only if for all 1|| s and 1|| t  we have  
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Remark 2.1If 0= , then the Corollary 2 and Corollary 3 reduces to well-known result proved by 

Shanmugam et al. in [11]. 

Lemma 2.([13]) Let q(z) be a univalent in E and let )(z  be analytic in a domaincontaining )(Eq .    If

)(

)(

zq

z'qz
 is starlike, then  

))(()())(()( zqz'qzzpz'pz   , 

then p(z)  q(z)and q(z) is best dominant.  

 

Theorem 2. Let )(z  be a starlike with respect to 1 and F(z)given by (2.1) be starlike.If 

),,;( bmpf    then we have  
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Proof. Let )(zp  be given by (2.5) and )(zq  be given by  

(2.7) ).(
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After a simple computation we obtain  
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 Since ),,;( bmpf   , we have  
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and the result now follows from Lemma 2  

Corollary 4. Let b  be a non zero complex number. If Af , and  
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Corollary 5. Let b  be a non zero complex number. If Af , and  
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