ON UNIFIED CLASS OF α - SPIRALLIKE FUNCTIONS OF COMPLEX ORDER

C. SELVARAJ DEPARTMENT OF MATHEMATICS, PRESIDENCY COLLEGE (AUTONOMOUS), CHENNAI-600 005, TAMILNADU , INDIA.

S. LAKSHMI

R.M.K.ENGINEERING COLLEGE. R.S.M. NAGAR, KAVARAIPETTAI-601 203, TAMILNADU, INDIA

ABSTRACT. In this paper, we consider an unified class of α - spirallike functions of complex order. Necessary and sufficient condition for functions to be in this class is obtained. Some of our results generalize previously known result.

1.INTRODUCTION

Let A denote the class of all analytic function of the form

(1.1)
$$f(z) = z + \sum_{n=1}^{\infty} a_n z^n$$

in the open unit disc $\mathbf{E} = \{z \in \mathbf{C} : |z| < 1\}$. Let *S* be the subclass of A consisting of univalent functions. Also, we denote by \mathbf{S}^* , \mathbf{C} and \mathbf{K} the familiar subclasses of A consisting of functions which are respectively starlike, convex and close-to-convex in \mathbf{E} . Our favorite references of the field are [4, 5] which covers most of the topics in a lucid and economical style.

For $-\pi/2 < \alpha < \pi/2$, a function $f \in A$ is said to be α -spiral in E if

(1.2)
$$Re\left\{e^{i\alpha} \frac{zf'(z)}{f(z)}\right\} > 0, \qquad (z \in \mathsf{E}).$$

Similarly, a function $f \in A$ is said to be convex α -spirallike in E if

(1.3)
$$Re\left\{e^{i\alpha}\left(1+\frac{zf^{''}(z)}{f^{'}(z)}\right)\right\}>0, \quad (z\in\mathsf{E}).$$

We denote α -spirallike functions and convex α -spirallike functions respectively by $SP(\alpha)$ and $CSP(\alpha)$. If f is in $CSP(\alpha)$, then it does not follow that $f(\mathsf{E})$ is convex or even spirallike in shape. Also, we note that functions in $CSP(\alpha)$ need not be univalent whereas functions in $SP(\alpha)$ are univalent.

Suppose if f and g are analytic in E, we say that f is subordinate to g written symbolically as $f \prec g$, if there exist a schwarz function w in E such that $f(z) = g(w(z)), z \in E$. If g is univalent in E, then the subordination is equivalent to f(0) = g(0) and $f(E) \subset g(E)$. That is $f \prec g$ will mean that every value taken by f in E is also taken by g.

Let $\phi(z)$ be an analytic function with positive real part on ϕ with $\phi(0) = 1, \phi'(0) > 0$ which maps the unit disc **E** onto a region starlike with respect to 1 which is symmetric with respect to the real axis.

Let $\mathbf{S}^*(\phi)$ be the class of functions in $f \in \mathbf{S}$ for which

(1.4)
$$\frac{zf'(z)}{f(z)} \prec \phi(z).$$

and $\mathbf{C}(\phi)$ class of functions in $f \in \mathbf{S}$ for which

(1.5)
$$1 + \frac{zf'(z)}{f(z)} \prec \phi(z).$$

The classes $S^*(\phi)$ and $C(\phi)$ were introduced and studied by Ma and Minda [7]. Analogous to the classes $S^*(\phi)$ and $C(\phi)$, Ravichandran et. al.[10] considered the classes $S_b^*(\phi)$ and $C_b(\phi)$ of complex order $b(b \in C \setminus \{0\})$ which is defined as follows:

(1.6)
$$\mathbf{S}_{b}^{*}(\phi) = \left\{ f \in \mathbf{A} : 1 + \frac{1}{b} \left(\frac{z f'(z)}{f(z)} - 1 \right) \prec \phi(z) \right\},$$

and

(1.7)
$$\mathbf{C}_{b}(\phi) = \left\{ f \in \mathsf{A} : 1 + \frac{1}{b} \frac{zf''(z)}{f'(z)} \prec \phi(z) \right\}.$$

From (1.6) and (1.7) we have

$$f \in C(\phi; b) \Leftrightarrow z f' \in \mathbf{S}^*(\phi; b).$$

Now, we introduce a more general class of α -spirallike function of complex order $\tau^{\alpha}(\phi; m, b)$ as follows.

Definition 1. The class $\tau^{\alpha}(\phi; m, b)$ of functions $f \in A$ analytic in E given by (1.1) and satisfying the condition

(1.8)
$$1 + \frac{e^{i\alpha}}{b\cos\alpha} \left(\frac{z f^{(m+1)}(z)}{f^{(m)}(z)} - 1 + m \right) \prec \phi(z), \quad (z \in \mathsf{E})$$

where $-\pi/2 < \alpha < \pi/2$, $b \in \mathbb{C} \setminus \{0\}$ and m is a positive integer.

We note that by specializing $b,m,\alpha,\phi(z)$ in the function class $\tau^{\alpha}(\phi;m,b)$, we obtain several wellknown and new subclasses of analytic functions. Here we list a few of them:

(i)
$$\tau^{\alpha}(\frac{1+z}{1-z}; 0, b) = S^{\alpha}(b)$$
 and $\tau^{\alpha}(\frac{1+z}{1-z}; 1, b) = C^{\alpha}(b)$, (Al-Oboudi and Haidan [1] and

Aouf et.al. [2]).

- (ii) $\tau^{0}(\phi; 0, b) = \mathsf{S}^{*}(\phi; b)$ and $\tau^{0}(\phi; 1, b) = \mathsf{C}(\phi; b)$, (Ravichandran et. al. [10]).
- (iii) $\tau^{0}(\phi; 0, 1) = \mathbf{S}^{*}(\phi)$ and $\tau^{0}(\phi; 1, 1) = \mathbf{C}(\phi)$ (Ma and Minda [7]).

2.MAIN RESULTS

To prove our main result, we cite the following lemma.

Lemma 1.([12])Let ϕ be a convex function defined on $\mathsf{E}, \phi(0) = 1$. Define F(z) by

(2.1)
$$F(z) = z \exp\left(\int_0^z \frac{\phi(t) - 1}{t} dt\right).$$

Let $p(z) = 1 + p_1 z + p_2 z^2 + \dots$ be analytic in E, then

(2.2)
$$1 + \frac{z p(z)}{p(z)} \prec \phi(z)$$

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics <u>http://www.ijmr.net.in</u> email id- irjmss@gmail.com if and only if for all $|s| \le 1$ and $|t| \le 1$ we have

(2.3)
$$\frac{p(tz)}{p(sz)} \prec \frac{s F(tz)}{t F(sz)}$$

Theorem 1. Let F(z) be defined as in (9) and let $\phi(z)$ be a convex function in E with $\phi(0) = 1$. The function $f \in \tau^{\alpha}(\phi; m, b)$ if and only if for all $|s| \leq 1$ and $|t| \leq 1$ we have

(2.4)
$$\left[\left(\frac{t}{s}\right)^{m-1}\frac{f^{(m)}(tz)}{f^{(m)}(sz)}\right]^{\frac{e^{i\alpha}}{b\cos\alpha}} \prec \frac{s\,F(tz)}{t\,F(sz)}$$

Proof. Let p(z) be defined by

(2.5)
$$p(z) = \left[\frac{f^{(m)}(z)}{z^{1-m}}\right]^{\frac{e^{i\alpha}}{b\cos\alpha}} (z \in \mathsf{E})$$

Taking logarithmic derivative of (2.5), we get

$$1 + \frac{zp'(z)}{p(z)} = 1 + \frac{e^{i\alpha}}{b\cos\alpha} \left(\frac{zf^{(m+1)}(z)}{f^{(m)}(z)} - 1 + m\right).$$

Since $f \in \tau^{\alpha}(\phi; p, m, b)$ we have

$$1 + \frac{zp'(z)}{p(z)} \prec \phi(z)$$

and the result now follows from lemma1.

Corollary 1. Let F(z) be defined by

$$F(z) = z \exp\left[\int_0^z \frac{1}{t} \left\{ \frac{\gamma - \beta}{\pi} \quad i \log\left(\frac{1 - e^{2\pi i (1 - \beta) \setminus (\gamma - \beta)} w(t)}{1 - w(t)}\right) \right\} dt \right].$$

The function $f \in A$ satisfies the condition

AJMI

$$\beta < Re\left\{1 + \frac{e^{i\alpha}}{b\cos\alpha} \left(\frac{zf^{(m+1)}(z)}{f^{(m)}(z)} - 1 + m\right)\right\} < \gamma$$

if and only if for all $|s| \le 1$ and $|t| \le 1$ we have

$$\left[\left(\frac{t}{s}\right)^{m-1}\frac{f^{(m)}(tz)}{f^{(m)}(sz)}\right]^{\frac{e^{t\alpha}}{b\cos\alpha}} \prec \frac{s\,F(tz)}{t\,F(sz)}$$

Proof. In Definition 1, let $\phi(z)$ be defined by

$$\phi(z) = 1 + \frac{\beta - \alpha}{\pi} \quad i \log\left(\frac{1 - e^{2\pi i (1-\alpha) \setminus (\beta - \alpha)} w(z)}{1 - w(z)}\right).$$

Clearly $\phi(z)$ is analytic which maps E onto a convex domain conformally with $\phi(0) = 1$. Using (1.8) together with Theorem 1, proves the result.

Corollary 2. Let F(z) be defined by

$$F(z) = z \exp\left(\int_0^z \frac{\phi(t) - 1}{t} dt\right).$$

The function $f \in A$ satisfies the condition

$$1 + \frac{e^{i\alpha}}{b\cos\alpha} \left(\frac{zf'(z)}{f(z)} - 1 \right) \prec \phi(z)$$

if and only if for all $|s| \leq 1$ and $|t| \leq 1$ we have

$$\left[\frac{s f(tz)}{t f(sz)}\right]^{\frac{e^{i\alpha}}{b\cos\alpha}} \prec \frac{s F(tz)}{t F(sz)}.$$

Corollary 3. Let F(z) be defined by

$$F(z) = z \exp\left(\int_0^z \frac{\phi(t) - 1}{t} dt\right).$$

The function $f \in A$ satisfies the condition

$$1 + \frac{e^{i\alpha}}{b\cos\alpha} \left(\frac{zf''(z)}{f'(z)} \right) \prec \phi(z)$$

if and only if for all $|s| \leq 1$ and $|t| \leq 1$ we have

$$\left[\frac{f'(tz)}{f'(sz)}\right]^{\frac{e^{i\alpha}}{b\cos\alpha}} \prec \frac{s F(tz)}{t F(sz)}$$

Remark 2.1If $\alpha = 0$, then the Corollary 2 and Corollary 3 reduces to well-known result proved by Shanmugam et al. in [11].

Lemma 2.([13]) Let q(z) be a univalent in E and let $\varphi(z)$ be analytic in a domain containing q(E). If

 $rac{z q'(z)}{q(z)}$ is starlike, then

 $z p'(z) \varphi(p(z)) \prec z q'(z) \varphi(q(z)),$

then $p(z) \prec q(z)$ and q(z) is best dominant.

Theorem 2. Let $\phi(z)$ be a starlike with respect to 1 and F(z)given by (2.1) be starlike. If $f \in \tau^{\alpha}(\phi; p, m, b)$ then we have

(2.6)
$$\left(\frac{z^m f^m(z)}{z^p}\right) \prec \left(\frac{F(z)}{z}\right)^{\frac{b \cos a}{e^{ia}}}$$

Proof. Let p(z) be given by (2.5) and q(z) be given by

(2.7)
$$q(z) = \frac{F(z)}{z} \quad (z \in \mathsf{E}).$$

After a simple computation we obtain

Vol.07 Issue-02, (July - December, 2015) ISSN: 2394-9309 Aryabhatta Journal of Mathematics and Informatics (Impact Factor- 4.1)

$$1 + \frac{z p'(z)}{p(z)} = 1 + \frac{e^{i\alpha}}{b \cos \alpha} \left(\frac{z f^{(m+1)}(z)}{f^{(m)}(z)} - p + m \right).$$

and

$$\frac{zq'(z)}{q(z)} = \frac{zF'(z)}{F(z)} - 1 = \phi(z) - 1.$$

Since $f \in \tau^{\alpha}(\phi; p, m, b)$, we have

$$\frac{z p'(z)}{p(z)} \prec \frac{z q'(z)}{q(z)}.$$

and the result now follows from Lemma 2

Corollary 4. Let b be a non zero complex number. If $f \in A$, and

$$1 + \frac{e^{i\alpha}}{b\cos\alpha} \left(\frac{zf'(z)}{f(z)} - 1 \right) \prec \frac{1+z}{1-z},$$

then

$$\frac{f(z)}{z} \prec (1-z)^{-2be^{-i\alpha}\cos\alpha}$$

and $(1-z)^{-2be^{-i\alpha}\cos\alpha}$, is the best dominant.

Corollary 5. Let b be a non zero complex number. If $f \in \mathsf{A}$, and

$$1 + \frac{e^{i\alpha}}{b\cos\alpha} \frac{z f^{''}(z)}{f^{'}(z)} \prec \frac{1+z}{1-z},$$

then

$$f'(z) \prec (1-z)^{-2be^{-i\alpha}\cos\alpha}$$

and $(1-z)^{-2be^{-i\alpha}\cos\alpha}$, is the best dominant.

References

[1] F. M. Al-Oboudi and M. M. Haidan, Spirallike functions of complex order, J. Nat. Geom. **19**(2001), no. 1-2, 53–72.

[2] M. K. Aouf, F. M. Al-Oboudi and M. M. Haidan, On some results for λ -spirallike and λ -Robertson functions of complex order, Publ. Inst. Math. (Beograd) (N.S.) **77(91)** (2005), 93–98.

[3] Teodor Bulboacã, Differential subordinations and superordinations. Recent result, House of Science Book Publ., Cluj-Napoca, 2005.

[4] A. W. Goodman, Univalent functions. Vol. I, Mariner, Tampa, FL, 1983.

[5] I. Graham and G. Kohr, *Geometric function theory in one and higher dimensions*, Dekker, New York, 2003.

[6] K. Kuroki and S. Owa, Notes on new class for certain analytic functions, RIMS Kokyuroku, **1772** (2011) pp. 21–-25.

[7] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in *Proceedings of the Conference on Complex Analysis (Tianjin, 1992)*, 157–169, Conf. Proc.Lecture Notes Anal., I, Int. Press, Cambridge, MA.

[8] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl. **48** (2003), no. 10, 815–826.

[9] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. **25**(1985), no.1, 1–12.

[10]V. Ravichandran et al., Certain subclasses of starlike and convex functions of complex order, Hacet. J. Math. Stat. **34** (2005), 9–15.

[11]T. N. Shanmugam, S. Sivasubramanian and S. Kavitha, On certain subclasses of functions of complex order, Southeast Asian Bull. Math. **33** (2009), no. 3, 535–541.

[12]St.Ruscheweyh, Convolutions in Geometric Function Theory, Presses Univ.Montreal Que., 1982.

[13]S. S. Miller and P. T. Mocanu, Differential subordinates: Theory and Applications, Serieson Monographs and Textbooks in Pure and Applied Mathematics, Vol.225, Marcel Dekkar, New York and Basel, 2000.

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics <u>http://www.ijmr.net.in</u> email id- irjmss@gmail.com