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ABSTRACT.In this paper, we consider an unified class of   - spirallike functions of complex order. 

Necessary and sufficient condition for functions to be in this class is obtained.Some of our results 

generalize previously known result.  

 

1.INTRODUCTION 

 

 Let A denote the class of all analytic function of the form  
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in the open unit disc  E = :| |<1z zC . Let 𝑆 be the subclass of A consisting of univalent functions. 

Also, we denote by 
*S , C  and K  the familiar subclasses of A consisting of functions which are 

respectively starlike, convex and close-to-convex in E . Our favorite references of the field are [4, 5] 

which covers most of the topics in a lucid and economical style. 

 

 For /2<</2   , a function 𝑓 ∈ 𝐴 is said to be  -spiral in E  if  
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 Similarly, a function Af  is said to be convex  -spirallike in E  if  
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We denote  -spirallike functions and convex  -spirallike functions respectively by )(SP  and 

)(CSP . If f  is in )(CSP , then it does not follow that )(Ef  is convex or even spirallike in shape. 

Also, we note that functions in )(CSP  need not be univalent whereas functions in )(SP  are 

univalent. 

 Suppose if f  and g  are analytic in E , we say that f  is subordinate to g  written symbolically as 

gf  , if there exist a schwarz function w  in E  such that   Ezzwgzf ,)(=)( . If g  is univalent in 

E , then the subordination is equivalent to (0)=(0) gf  and )()( EE gf  . That is gf   will mean 

that every value taken by f  in E  is also taken by g . 

 Let )(z  be an analytic function with positive real part on  with 0>(0)1,=(0) ' which maps 

the unit disc E  onto a region starlike with respect to 1 which is symmetric with respect to the real axis.  

Let )(* S  be the class of functions in Sf  for which 
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)(

)(
z

zf

z'fz
  

 and )(C  class of functions in Sf  for which  
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The classes )(* S  and )(C  were introduced and studied by Ma and Minda [7]. Analogous to the 

classes )(* S  and )(C , Ravichandran et. al.[10] considered the classes )(
*

bS  and )(
b

C  of complex 

order  {0}\Cbb  which is defined as follows:  
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From (1.6) and (1.7) we have 
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);();( b'fzbCf  *S . 

Now, we introduce a more general class of  -spirallike function of complex order ),;( bm  as 

follows. 

 

Definition 1. The class ),;( bm   of functions Af  analytic in E  given by (1.1) and satisfying the 

condition  
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where {0}\/2,<</2 C b  and m  is a positive integer.  

 

 We note that by specializing )(,,, zmb   in the function class ),;( bm  , we obtain several well-

known and new subclasses of analytic functions. Here we list a few of them: 

(i) )(=)0,;
1

1
( bb

z

z  S



 and )(=)1,;

1

1
( bb

z

z  C



, (Al-Oboudi and  Haidan [1] and  

Aouf et.al. [2]). 

(ii) );(=)0,;( *0 bb  S  and );(=)1,;(0 bb  C , (Ravichandran et. al. [10]). 

(iii) )(=1)0,;( *0  S  and )(=1)1,;(0  C (Ma and Minda [7]). 

 

2.MAIN RESULTS 

 To prove our main result, we cite the following lemma.  

Lemma 1.([12])Let   be a convex function defined on 1.=(0),E  Define F(z) by 

(2.1) .
1)(

exp=)(
0








 
 dt

t

t
zzF

z
 

 Let p(z) = 1 + 2

21 zpzp  +..... be analytic in E, then  
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 if and only if for all 1|| s  and 1|| t  we have  

(2.3) 
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Theorem 1. Let )(zF  be defined as in (9) and let )(z  be a convex function in E  with 1=(0) . The 

function ),;( bmf    if and only if for all 1|| s and 1|| t  we have  
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Proof. Let )(zp  be defined by  
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 Taking logarithmic derivative of (2.5), we get   
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Since ),,;( bmpf    we have 
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and the result now follows from lemma1.  

 

Corollary 1. Let )(zF  be defined by  
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The function Af  satisfies the condition 
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 if and only if for all 1|| s and 1|| t  we have  
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Proof. In Definition 1, let )(z  be defined by  
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Clearly )(z  is analytic which maps E  onto a convex domain conformally with 1=(0) . Using (1.8) 

together with Theorem 1, proves the result.  

 

Corollary 2. Let )(zF  be defined by  
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Corollary 3. Let )(zF  be defined by  
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The function Af  satisfies the condition 
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Remark 2.1If 0= , then the Corollary 2 and Corollary 3 reduces to well-known result proved by 

Shanmugam et al. in [11]. 

Lemma 2.([13]) Let q(z) be a univalent in E and let )(z  be analytic in a domaincontaining )(Eq .    If
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then p(z)  q(z)and q(z) is best dominant.  

 

Theorem 2. Let )(z  be a starlike with respect to 1 and F(z)given by (2.1) be starlike.If 
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Proof. Let )(zp  be given by (2.5) and )(zq  be given by  
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After a simple computation we obtain  
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and the result now follows from Lemma 2  

Corollary 4. Let b  be a non zero complex number. If Af , and  
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Corollary 5. Let b  be a non zero complex number. If Af , and  
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