IJPAS Vol.02 Issue-04, (April 2015) ISSN: 2394-5710 International Journal in Physical & Applied Sciences (Impact Factor- 2.871)

Matrix Transformations into The Generalized Space of Entire Sequences

Zakawat U. Siddiqui* and Ahmadu Kiltho

Department of Mathematics and Statistics, University of Maiduguri, Borno State, Nigeria

Abstract

The object of this note is to characterize infinite matrices between some sequence spaces and the generalized set of entire sequences. The investigations reveal that the sets Γ and $c_0(1/k)$ are essentially the same. Their generalized classes, $(c_0^{\nu}(p,s); \Gamma(p))$ and $(l^{\nu}(p,s); \Gamma(p))$ are characterized.

Key Words: Duals, Entire Sequences, Matrix Transformations, Paranormed Spaces, Sequence Spaces

Mathematics Subject Classification: 40H05, 46A45, 47B07

1. Introduction

1.1 Matrix transformations

Let $A = (a_{nk})$ be an infinite matrix of complex numbers a_{nk} (n, k = 1, 2, ...) and X, Y be two nonempty subset of the space ω of all complex sequences. The matrix A is said to define a matrix transformation from X into Y and write $A : X \to Y$ if for every $x = (x_k) \in X$ and every integer n we have

$$A_n(x) = \sum_{k=1}^{\infty} a_{nk} x_k.$$

If the sequence $Ax = (A_n(x))$ exists, then it is called the transformation of x by the matrix A. Further, $A \in (X, Y)$ if and only if $A_n \in X^\beta$ for all $Ax \in Y$, whenever $x \in X$; where the pair (X, Y) denotes the class of matrices A. The determination of the necessary and sufficient conditions for a matrix $A = (a_{nk})$ to be in the class (X, Y) for varying sequence spaces X and Y has been the focal point of many researchers.

1.2 Some new sequence spaces: Definitions and notations

Take $p = (p_k)$, $p_k > 0$ for all k and let $q = (q_k)$ be any bounded sequence. Define any fixed sequence of non – zero complex numbers $v = (v_k)$ such that

$$\lim_{k\to\infty} \inf |v_k|^{1/k} = \eta, \ (0 < \eta < \infty).$$

The following sequence spaces are relevant in this work:

- (a) $\Gamma(p) = \{x = (x_k) : |k! | x_k | q_k \to 0, \text{ as } k \to \infty.$ This is a linear metric space under the metric topology generated by the paranorm, $(f) = \sup_k |k! | x_k | q_{k/M}$, (see [2]).
- (b) $l^{\nu}(p,s) = \{x = (x_k) : sup_k k^{-1} | x_k v_k |^{p_k} < \infty, s \ge 0 \}$. This space is paranormed by

$$h(x) = (\sum_{k} k^{-s} |x_{k} v_{k}|^{p_{k}})^{1/M}$$

(c) $c_0^{\nu}(p,s) = \{x = (x_k), k^{-1} | x_k v_k | p_k \to 0, s \ge 0\}$, paranormed by $g(x) = \sup_k (k^{-1} | x_k v_k | p_k)^{1/M}$

where,

$$H = \sup_k p_k$$
 and $M = \max(1, H)$, see [1].

If *E* is a set of complex sequences $x = (x_k)$ then E^+ will denote the generalized Kőthe-Toeplitz dual of *E* defined by

$$E^{+} = \{a = (a_{k}) \in \omega : \sum_{k=1}^{\infty} a_{k} x_{k} \text{ converges } \forall x \in E\}$$

If E is a set of complex sequences $x = (x_k)$ then E^{α} will denote the α - dual of E defined by

$$E^{\alpha} = \{a = (a_k) \in \omega : \sum_{k=1}^{\infty} |a_k x_k| < \infty, \forall x \in E \text{ (see [3])} \}$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in Physical & Applied Sciences <u>http://www.ijmr.net.in</u> email id- <u>irjmss@gmail.com</u> Page

IJPAS Vol.02 Issue-04, (April 2015) ISSN: 2394-5710 International Journal in Physical & Applied Sciences (Impact Factor- 2.871)

Further, if $E \subset \omega$, and E is a Kőthe space, then E is solid; and if E is solid then $E^{\alpha} = E^{\beta} = E^{\gamma}$ called the α -, β - and γ - duals of E, respectively. That E is solid or total means when $x \in E$ and $|y_k| \leq |x_k|$, $\forall k \in N$ together imply $y \in E$, (see [4] and [5]).

Let $X \supset \emptyset$ be a *BK*- space. Then there is a linear one-to-one mapping $T : X^{\beta} \to X^*$; we denote this by saying $X^{\beta} \supset X^*$. \emptyset is a set of finite sequences and X^* the continuous dual of X; while a *BK*space is a vector space whose elements are complex sequences $x = (x_k)_{k\geq 0}$ and which is also a Banach space (that is, normed and complete) with continuous coordinates (that is, $|| x^n - x ||_X \to 0$ implies $|x^n - x| \to 0$ for each k, as $n \to \infty$), (see [6] and [7])

2. Some known results

The following known results play vital role in our main results, they amount to computing α – and continuous duals of the sequence spaces $l^{\nu}(p, s)$ and $c_0^{\nu}(p, s)$.

Lemma 1 (Lemma 2.1, [2]): Let $0 < p_k \le sup_k p_k < \infty$. Then

(i)
$$(c_0^{\nu}(p,s))^{\alpha} = M_0^{\nu}(p,s),$$

where,

$$M_0^{\nu}(p,s) = \bigcup_{N>1} \{ a = (a_k) \in \omega : \sum_k | a_k v_k^{-1} | k^{s/p_k} N^{-1/p_k} < \infty, s \ge 0 \}$$

(ii) $(c_0^{\nu}(p,s))^*$ is isomorphic to $M_0^{\nu}(p,s)$

Lemma 2 (Lemma 2.2 [2]): (i) If $0 < p_k \le sup_k < \infty$ and $p_k^{-1} + q_k^{-1} = 1$, k = 1, 2, ... Then

(i)
$$(l^{\nu}(p,s))^{\alpha} = M^{\nu}(p,s),$$

(ii) $(l^{\nu}(p,s))^*$ is isomorphic to $M^{\nu}(p,s)$,

where,

$$M^{\nu}(p,s) = \{a = (a_k) \in \omega : \sum_k |a_k v_k^{-1}|^{q_k} k^{s(q_k-1)} N^{-q_k/p_k} < \infty, s \ge 0\}$$

3. Main Results

In what follows we prove the following theorems:

Theorem A: Let $0 < p_k \le sup_k < \infty$ and $p_k^{-1} + q_k^{-1} = 1$, k = 1, 2, Then $A \in (c_o^v(p, s) : \Gamma(p))$ if and only if

$$(n! \sum_{k} |a_{k} v_{k}^{-1}| M^{-/p_{k}} k^{s/p_{k}})^{q_{n}} \to 0, \text{ as } n \to \infty, M > 1, M \in N$$
(1)

Proof: For sufficiency, since $x \in c_0^v(p, s)$, there exists M > 1 such that

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in Physical & Applied Sciences <u>http://www.ijmr.net.in</u> email id- <u>irjmss@gmail.com</u> Page

$$|v_k x_k| < M^{-/p_k} k^{s/p_k}, \forall k.$$

Let (1) hold, then for a given $\varepsilon > 0$, there exists an integer n_0 such that

$$(n!\sum_{k} \left| a_{k}v_{k}^{-1} \right| M^{-/p_{k}}k^{s/p_{k}})^{q_{n}} < \varepsilon, \forall n > n_{0}$$

$$(2)$$

Now,

$$(n! A_n(x))^{q_n} \le (n! \sum_{k=1}^{\infty} a_{nk} x_k)^{q_n}$$

$$\le (n! \sum_{k=1}^{\infty} (a_{nk} v_k^{-1}) v_k^{-1} x_k)^{q_n}$$

$$\le (n! \sum_{k=1}^{\infty} |a_{nk} v_k^{-1}| k^{s/p_k} M^{-1/p_k})^{q_n}$$

$$\to 0 \text{ as } n \to \infty \text{ for } n \ge n_0 \text{ (by (1))}$$

Necessity: If (1) does not hold, then there exist subsequences of (n) such that

$$(n!\sum_{k=1}^{\infty} |a_{nk}v_k^{-1}| k^{s/p_k} M^{-1/p_k})^{q_n} > \varepsilon \text{ when } n \to \infty$$
(3)

Since $A \in (c_o^{\nu}(p,s): \Gamma(p))$, then the sequence $A_n = (a_{nk})_{k=0}^{\infty} \in (c_o^{\nu}(p,s))^*$. So by Lemma (1)

$$\sum_{k=1}^{\infty} |a_{nk} v_k^{-1}| \, k^{s/p_k} M^{-1/p_k} \, \infty, \text{ for } M > 1 \tag{4}$$

Since $x = e^k \in (c_o^v(p, s), A_n = (a_{nk}) \in \Gamma(p)$, so that,

$$(n! |a_{nk}v_k^{-1}|)^{q_n} \le A_k \forall n \text{ and for each fixed } k$$
(5)

Let us construct a sequence $(x_k) \in (c_o^v(p, s))$ and show that the corresponding sequence $(A_n) \notin \Gamma(p)$. This will amount to provision that the condition is necessary.

By (3) $n = n_1$ and $k = q_1$ can be chosen such that

$$(n_1! \sum_{k=1}^{q_1} |a_{n_1k} v_k^{-1}| (M+1)^{-1/p_k} k^{s/p_k})^{q_{n_1}} > 1$$
(6)

After fixing n_1 by (4) we choose $k = k_1 > q_1$ such that

$$(n_1! \sum_{k=k_1+1}^{\infty} |a_{n_1k} v_k^{-1}| (M+1)^{-1/p_k} k^{s/p_k})^{q_{n_1}} < \varepsilon$$
(7)

Taking for all *n*, defined by

$$x_{k} = \begin{cases} \operatorname{sgn}|a_{nk}v_{k}^{-1})(M+1)^{-1/p_{k}} v_{k} k^{s/p_{k}} \text{ for all } n, \text{ and } 1 \le k \le k_{1} \\ \operatorname{sgn}|a_{nk}v_{k}^{-1})(M+1)^{-1/p_{k}} v_{k} k^{s/p_{k}} \text{ for all } n, \text{ and } k_{j-1} \le k \le k_{j}, \ j = 2, 3, \dots \end{cases}$$
(8)

so that $(x_k) \in (c_o^v(p, s))$ and

$$(M+i)^{-1/p_k} \le (M+i-1)^{-1/p_k} \tag{9}$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in Physical & Applied Sciences <u>http://www.ijmr.net.in</u> email id- <u>irjmss@gmail.com</u> Pag

Thus, using (6), (9) and (7), we should have

$$(n_{1})! |A_{n_{1}}|)^{q_{n_{1}}} \ge (n_{1}! |\sum_{k=1}^{k_{1}} (a_{n_{1}k}v_{k}^{-1})v_{k}x_{k}|)^{q_{n_{1}}} - (n_{1}! |\sum_{k=k_{1}+1}^{\infty} (a_{n_{1}k}v_{k}^{-1})v_{k}x_{k}|)^{q_{n_{1}}} \\
\ge (n_{1}! |\sum_{k=1}^{k_{1}} (a_{n_{1}k}v_{k}^{-1})(M+1)^{-1/p_{k}} k^{s/p_{k}}|)^{q_{n_{1}}} - (n_{1}! |\sum_{k=k_{1}+1}^{\infty} (a_{n_{1}k}v_{k}^{-1})(M+2)^{-1/p_{k}} k^{s/p_{k}}|)^{q_{n_{1}}} \\
\ge 1 - \varepsilon.$$

Thus, from (5) and (9), we must have for all n,

$$(n_{1}! | \sum_{k=1}^{k_{i}} (a_{n_{1}k} v_{k}^{-1}) (M+i)^{-1/p_{k}} k^{s/p_{k}} |)^{q_{n_{i}}} \leq (n_{1}! | \sum_{k=1}^{k_{1}} (a_{n_{1}k} v_{k}^{-1}) (M)^{-1/p_{k}} k^{s/p_{k}} |)^{q_{n_{i}}} \leq c_{k_{i}};$$

where,

$$c_{k_i} = \sum_{k=1}^{k_i} A_k \tag{10}$$

By (3) $n = n_2 > n_1$ and $q_2 > k_1$ can be chosen such that

$$(n_1! |\sum_{k=1}^{q_2} (a_{n_1k} v_k^{-1}) (M+2)^{-1/p_k} k^{s/p_k} |)^{q_{n_2}} > 2 + \le c_{k_1}$$
(11)

Having fixed n_2 , by (4) choose $k = k_2 > q_1$ such that

$$(n_1! |\sum_{k=k_2+1}^{\infty} (a_{n_1k} v_k^{-1})(n_2! |\sum_{k=k_1+1}^{k_2} (a_{n_2k} v_k^{-1}) v_k x_k|)^{q_{n_2}}|)^{q_{n_2}} < \varepsilon$$
(12)

$$(n_{2})! |A_{n_{2}}|)^{q_{n_{2}}} \leq (n_{2}! |\sum_{k=k_{1}+1}^{k_{2}} (a_{n_{2}k}v_{k}^{-1})v_{k}x_{k}|)^{q_{n_{2}}} - (n_{2}! |\sum_{k=1}^{k} (a_{n_{2}k}v_{k}^{-1})v_{k}x_{k}|)^{q_{n_{2}}}$$

$$-(n_{2}! |\sum_{k=k_{2}+1}^{\infty} a_{n_{2}k}v_{k}x_{k}|)^{q_{n_{2}}}$$

$$\geq (n_{2}! |\sum_{k=k_{1}+1}^{k_{2}} (a_{n_{2}k}v_{k}^{-1})(M+2)^{-1/p_{k}} k^{s/p_{k}})^{q_{n_{2}}}$$

$$-(n_{2}! |\sum_{k=1}^{k_{1}} (a_{n_{2}k}v_{k}^{-1})(M+1)^{-1/p_{k}} k^{s/p_{k}}|)^{q_{n_{2}}}$$

$$-(n_{2}! |\sum_{k=k_{2}+1}^{\infty} a_{n_{2}k}(M+3)^{-1/p_{k}} k^{s/p_{k}}|)^{q_{n_{2}}}$$

$$[by (8)]$$

 $> 2 - \varepsilon$ [by (9), (10), (11), (12)].

Continuously proceeding in this manner, we can choose $n_i > n_{i-1}$ and $q_i > k_{i-1}$ by (3) such that

$$(n_i! \mid \sum_{k=k_{i-2}+1}^{k_i} (a_{n_ik} v_k^{-1}) (M+i)^{-1/p_k} k^{s/p_k})^{q_{n_i}} > i + c_{k_{i-1}}.$$

Therefore, for fixed n_i , we can choose $k_i > q_i$ by (4) such that

$$(n_i! \mid \sum_{k=k_i+1}^{\infty} (a_{n_ik} v_k^{-1}) (M+i)^{-1/p_k})^{q_{n_i}} < \varepsilon$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in Physical & Applied Sciences <u>http://www.ijmr.net.in</u> email id- <u>irjmss@gmail.com</u> Page

So, as above by the use of (8), (9) and (10) it can shown that

$$(n_i! \mid A_{n_i} \mid)^{q_{n_i}} > i - \varepsilon.$$

But ε was arbitrarily given so that $(n_i! | A_{n_i} |)^{q_{n_i}} \to \infty$ as $n \to \infty$. Hence the sequence $(A_n) \notin \Gamma(p)$. This proves that (1) is a necessity.

Theorem B: Let $0 < p_k \le \sup_k < \infty$ and $p_k^{-1} + q_k^{-1} = 1$, $k = 1, 2, \dots$. Then $A \in (l^v(p, s) : \Gamma(p))$ if and only if

$$(n! \sum_{k} \left| a_{nk} v_{k}^{-1} \right|^{q_{k}} k^{s(q_{k}-1)} N^{-q_{k}/p_{k}} \overset{q_{n}}{\to} 0, \text{ as } n \to \infty, \text{ uniformly in } \mathbf{k},$$

$$(13)$$

where,

$$p_{k>1}$$
 and $p_k^{-1} + q_k^{-1} = 1$.

Proof: Sufficiency–Since $(x_k) \in l^{\nu}(p, s)$, then there exists a finite $M \ge 1$ such that

$$\sum_{k} k^{-s} |x_k v_k|^{p_k} \le M \tag{14}$$

Let (13) hold good. Then given an $\varepsilon > 0$, there exists some integer $N = N(\varepsilon)$ independent of k such that

$$(n!\sum_{k} \left| a_{nk}v_{k}^{-1} \right|^{q_{k}} k^{s(q_{k}-1)}N^{-q_{k}/p_{k}})^{q_{n}} < \frac{\varepsilon}{M}, \ \forall \ n \ge N$$

$$(15)$$

Now,

$$(n! A_n(x))^{q_n} \le (n! \sum_{k=1}^{\infty} |a_{nk} x_k|^{q_n}$$

$$\le (n! \sum_{k=1}^{\infty} |a_{nk} v_k^{-1}| |v_k^{-1} x_k|)^{q_n}$$

$$\le (n! \sum_k |a_{nk} v_k^{-1}|^{q_k} |v_k^{-1} x_k| k^{s/p_k} k^{-s/p_k} N^{-q_k/p_k})^{q_n}$$

$$\le (n! \sum_k |a_{nk} v_k^{-1}|^{q_k} |v_k^{-1} x_k| k^{s/p_k} k^{-s/p_k} N^{-q_k/p_k})^{q_n}$$

$$\leq (n! \sum_{k} |a_{nk} v_{k}^{-1}|^{q_{k}} |v_{k}^{-1} x_{k}| k^{s(q_{k}-1)} N^{-q_{k}/p_{k}})^{q_{n}} \cdot (\sum_{k} |v_{k} x_{k}|^{p_{k}} k^{-s})^{q_{n}/p_{k}}$$

$$\leq (\varepsilon/M)^{1/q_k} \cdot M^{q_n/p_k}$$
$$< \varepsilon.$$

Since the choice of ε was arbitrary, it shows that $A \in \Gamma(p)$.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in Physical & Applied Sciences <u>http://www.ijmr.net.in</u> email id- <u>irjmss@gmail.com</u> Page

Necessity— If (13) does not hold, ten there exist subsequences of values of n such that

$$(n! \sum_{k} |a_{nk} v_{k}^{-1}|^{q_{k}} k^{s(q_{k}-1)} N^{-q_{k}/p_{k}})^{q_{n}} \ge \varepsilon$$
(16)

Since the matrix between, $l^{\nu}(p,s)$ and $\Gamma(p)$ being BK – spaces, is continuous, the sequence $(a_{nk}) \in (l^{\nu}(p,s))^*$. Hence, by Lemma 2,

$$\sum_{k} \left| a_{nk} v_{k}^{-1} \right|^{q_{k}} k^{s(q_{k}-1)} N^{-q_{k}/p_{k}} \text{ is convergent for } N > 1$$
(17)

When $x_k = 1$ and $x_j = 0$ for $j \neq k$, $x_k \in l^{\nu}(p, s)$ so that $A_n = (a_{nk})_{k=1}^{\infty} \in \Gamma(p)$. Hence,

$$(n! \mid a_{nk} v_k^{-1} \mid)^{q_n} \le A_k', \text{ for all } n \text{ and each fixed } k$$
(18)

This implies that

$$(n! | a_{nk}v_k^{-1} | k^{s/p_k})^{q_n} \le A_k$$
, where $A_k = k^{s/p_k}A'_k$, for each fixed k and for all n.

Using (16), (17) and (18), we can construct a sequence $(x_k) \in l^{\nu}(p,s)$ and show that $(A_n(x)) \notin \Gamma(p)$, then that will suffice to show the necessity of condition holds.

Now, by (16) choose $n = n_1$ and $k = q_1$ such that

$$(n_1! \sum_{k=1}^{q_1} |a_{n_1k} v_k^{-1}|^{q_k} k^{s(q_k-1)} N^{-q_k/p_k})^{q_{n_1}} > 1$$
(19)

Having fixed n_1 , by (17), for $\varepsilon > 0$, we can choose $k_1 > q_1$ such that

$$(n_1! \sum_{k=k_1+1}^{\infty} \left| a_{n_1k} v_k^{-1} \right|^{q_k} k^{s(q_k-1)} N^{-q_k/p_k})^{q_{n_1}} < \varepsilon$$
(20)

the series being convergent.

Let
$$x_k = \left| a_{n_1k} v_k^{-1} \right|^{q_k - 1} k^{s(q_k - 1)} N^{-q_k/p_k} \operatorname{sgn}(a_{n_1} v_k^{-1})$$
, for $1 \le k \le k_1$, then
 $|n_1! A_{n_1}(x)|^{q_{n_1}} \ge (|n_1! \sum_{k=1}^{k_1} (a_{n_1k} v_k^{-1}) x_k|)^{q_{n_1}} - (n_1! \left| \sum_{k=k_1+1}^{\infty} (a_{n_1k} v_k^{-1}) x_k \right|)^{q_{n_1}}$

$$\geq (|n_{1}! \sum_{k=1}^{k_{1}} (a_{n_{1}k} v_{k}^{-1}) x_{k} k^{s(q_{k}-1)} N^{-q_{k}/p_{k}}|)^{q_{n_{1}}} - (n_{1}! |\sum_{k=k_{1}+1}^{\infty} (a_{n_{1}k} v_{k}^{-1}) x_{k} k^{s(q_{k}-1)} N^{-q_{k}/p_{k}}|)^{q_{n_{1}}} \cdot (\sum_{k=k_{1}+1}^{\infty} |x_{k}|^{p_{k}} k^{-s})^{q_{n_{1}/p_{k}}} > 1 - \varepsilon$$

$$(21)$$

Since, $(q_k - 1) = q_k/p_k$, from (17) we have for all n,

$$(n_1! \sum_{k=1}^{k_1} |a_{n_1k} v_k^{-1}|^{q_k} k^{s(q_k-1)} N^{-q_k/p_k})^{q_n} \le (n_1! \sum_{k=1}^{k_1} |a_{n_1k} v_k^{-1}| k^{s/p_k} N^{-q_k/p_k})^{q_k/q_n}$$

$$\le A_1^{q_k} + A_2^{q_k} + \dots A_{k_1}^{q_k}$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in Physical & Applied Sciences <u>http://www.ijmr.net.in</u> email id- <u>irjmss@gmail.com</u> Pag

IJPAS Vol.02 Issue-04, (April 2015) ISSN: 2394-5710 International Journal in Physical & Applied Sciences (Impact Factor- 2.871)

$$\leq c_{k_1}$$
, where $c_{k_1} = A_1^{q_k} + A_2^{q_k} + \dots A_{k_1}^{q_k}$ (22)

Now by (15), choose $n_2 > n_1$ and $q_2 > k_1$ such that

$$(n_1! \sum_{k=k_1+1}^{q_2} |a_{n_2k}v_k^{-1}|^{q_k} k^{s(q_k-1)} N^{-q_k/p_k})^{q_{n_2}} > 2 + c_{k_1}$$
(23)

Having fixed n_2 , by (16), it is possible to choose a $k_2 > q_2$ such that

$$(n_2! \sum_{k=k_1+1}^{\infty} \left| a_{n_2k} v_k^{-1} \right|^{q_k} k^{s(q_k-1)} N^{-q_k/p_k})^{q_{n_2}} < \varepsilon$$
(24)

Again, let $x_k = \left| a_{n_2k} v_k^{-1} \right|^{q_k - 1} k^{s(q_k - 1)} N^{-q_k/p_k} \operatorname{sgn}(a_{n_2k} v_k^{-1})$, for $1 \le k \le k_2$, then we have

$$|n_{2}!A_{n_{2}}(x)|^{q_{n_{2}}} \ge (|n_{2}!\sum_{k=k_{1}+1}^{k_{2}}(a_{n_{2}k}v_{k}^{-1})x_{k}|)^{q_{n_{2}}} - (n_{2}!\left|\sum_{k=1}^{k_{1}}(a_{n_{2}k}v_{k}^{-1})x_{k}\right|)^{q_{n_{2}}}$$

$$= (n_{2}!\sum_{k=k_{1}+1}^{k_{2}}|a_{n_{2}k}v_{k}^{-1}||k^{s(q_{k}-1)}N^{-q_{k}/p_{k}})^{q_{n_{2}}}$$

$$= (n_{2}!\sum_{k=1}^{k_{1}}|a_{n_{2}k}v_{k}^{-1}||x_{k}|)^{q_{n_{2}}}$$

$$- (n_{2}!\sum_{k=k_{2}+1}^{k_{1}}|a_{n_{2}k}v_{k}^{-1}||x_{k}|)^{q_{n_{2}}}$$

$$> 2 + c_{k_1} - c_{k_1} - (n_2! \sum_{k=k_2+1}^{\infty} |a_{n_2k} v_k^{-1}|^{q_k} k^{s(q_k-1)} N^{-q_k/p_k})^{q_{n_2}/q_k}$$
$$(\sum_{k=k_2+1}^{\infty} |x_k|^{p_k} k^{-s})^{q_{n_2}/p_k}$$

 $> 2 - \varepsilon$, by (22), (23) and (24)

Proceeding in this manner, by (16), we can choose $n_m > n_{m-1}$ and $q_m > k_{m-1}$ such that

$$(n_m! \sum_{k=k_{m-1}+1}^{q_m} |a_{n_mk} v_k^{-1}| k^{s(q_k-1)} N^{-q_k/p_k})^{q_{n_m}} > m + (m-1)c_{k_1} + (m-2)c_{k_2} + \dots + c_{k_{m-1}}$$
(25)

Having fixed n_m by (17), choose $k_m > q_{m-1}$ such that

$$(n_m! \sum_{k=k_m+1}^{\infty} \left| a_{n_m k} v_k^{-1} \right|^{q_k} k^{s(q_k-1)} N^{-q_k/p_k})^{q_{n_m}} < \varepsilon$$
(26)

Finally, take $x_k = |a_{n_m k} v_k^{-1}|^{q_k - 1} k^{s(q_k - 1)} N^{-q_k/p_k} \operatorname{sgn}(a_{n_m k} v_k^{-1})$, for $k_{m-1} \le k \le k_m$, then we should have,

$$|n_m!A_n(x)|^{q_{n_m}} \to \infty \text{ as } n \to \infty$$

Hence, $(A_n(x)) \notin \Gamma(x)$, so that (13) is necessary.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in Physical & Applied Sciences <u>http://www.ijmr.net.in</u> email id- <u>irjmss@gmail.com</u> Pag

References

- [1] Nanda, S., P. D. Srivastava and K. C. Nayak, (1981), "Certain subspaces of a Frechet space", *Indian J. pure appl. Math.12(8)*, pp. 971 976
- [2] Bilgin, T., (2002), "Matrix transformations of some generalized analytic sequence spaces", *Math. Comp. Appl., 7*(2), pp. 165 170
- [3] Maddox, I. J., (1969), "Continuous and Kőthe- Toeplitz duals of certain sequence spaces", *Proc. Camb. Phil. Soc., 65 (431)*, pp. 431 – 435
- [4] Boos, J., (200), "Classical and modern methods of summability", *Oxford University Press, Oxford.*
- [5] Maddox, I. J., (1991), "Solidity in sequence spaces", *Revista Mathematica de la Universidad Complutense de Madrid, 4(2,3)*, pp.185 – 192
- [6] Malkowsky, E., (1997), "Recent results in the theory of matrix transformations in sequence spaces", *MATEMATИЧКИ BECHИК, 49*, pp. 187–196
- [7] Jakimovski, A and D C Russell, (1972), "Matrix mappings between BK spaces", Bull. London Math. Soc., 4, pp.345 – 353