GROUNDWATER CONTAMINATION AND POTENTIAL HEALTH EFFECTS

C. N. Ezugwu

Department of Civil Engineering, Anambra State University, Uli, Nigeria.

ABSTRACT

Groundwater is often used as a source of water supply. This water is often contaminated by inorganic, organic and microbiological substances in the water. These materials find themselves into groundwater through different sources. They make the water unfit for different uses due to their presence in the water in varying quantities leading to health problems, if found in humans above tolerable limits. Groundwater is contaminated by natural impurities or by human activities. This study examines the contaminants, their sources to groundwater and the potential health effects. It is recommended that groundwater be monitored periodically and treated before use, if pollutants are found to exist above tolerable levels to ensure that it is fit for its intended purpose.

Keywords: Groundwater, potential health effects, contaminants, human activities, natural impurities.

1. Introduction

Groundwater is a resource found under the earth's surface. Most groundwater comes from rain and melting snow soaking into the ground. Water fills the spaces between rocks and soils, making an "aquifer". Most drinking water comes from groundwater. Most is supplied through public drinking water system.

Depth of groundwater from surface, its quality for drinking and chance of being polluted varies from place to place. Generally, the deeper the well, the better the groundwater. The amount of new water flowing into the area also affects the groundwater quality.

Groundwater may contain some natural impurities or contaminants, even with no human activities or pollution. Natural contaminants can come from many conditions in the water shed or in the ground. Water moving through underground rocks or soils may pick up magnesium, calcium and chlorides. Some ground water naturally contains dissolved elements such as; arsenic, boron, selenium or radon, a gas formed by the natural breakdown of radioactive uranium in soil. These natural contaminants are health problems if presents above tolerable limits.

In addition to natural contaminants, groundwater is often polluted by human activities such as;

- Improper use of fertilizers animal manures, herbicides and pesticides.
- Improperly built or poorly located or maintained septic systems for household water.
- Leaking or abandoned underground storage tanks and piping.
- Storm-water drains that discharge chemicals to groundwater.
- Improper disposal or storage of wastes.
- Chemical spills at local industrial sites.

Many groundwater sources are safe for drinking while some are unsafe. About 50% of all the under groundwater used in urban areas of developing countries is derived from wells, springs and boreholes and more than 1000million inhabitants in Asia and 150 inhabitants of America rely on such resources [1].

The dependence on groundwater is increasing arid and semi arid regions of the world as a result of vagaries of monsoon and scarcity of surface water [2]; [3]; [4]; [5]. According to the world Health Organization, every year more than 2.2 million people from developing countries die from diseases associated with the lack of access to safe drinking water and inadequate sanitation, WHO [6]. About 60% of all infant mortality worldwide is linked to infections and parasitic diseases, most of them are water related [7]. Most urban population in the world rely on dug wells, boreholes, hand pumps and tube wells for all their groundwater requirements. Its quality is getting deteriorated due to untreated discharge of industrial and urban affluent.

The quantity of water is of vital importance whether for individual or domestic purposes. For water to be of consumable quantity, it must attain a certain degree of purity veritable employing existing water quality standards. Often, the raw water used for domestic purposes is vulnerable to contamination due to natural and human influences, resulting in pollution.

According to [8], drinking water standards are based on two main criteria, namely; the presence of objectionable taste, odour and colour; and the presence of substances with adverse physiological effects. However, mineral

enrichment from underlying rocks can change the chemistry of water, making it unsuitable for consumption [9].

Moreover, water can be a source of serious environmental and health problems. The design and development of such water supply system is not coupled and tied with appropriate sanitation measures. According to [10], drinking water can act as passive means of transporting nutrients into the body system. However, the objective or primary concern is providing potable water free from harmful microorganisms and undesirable and harmful chemicals. Therefore, both the physiochemical and bacteriological assessment of potable water is of paramount importance. Monitoring must be given the highest priority. Groundwater pollution is mainly due to the processes of industrialization and urbanization that have progressively developed over time without any regard for environmental consequences [11].

Southwestern Nigerian is underlain primarily by basement complex rocks of pre-Cambrian age, comprising gneisses, migmatities and schist. When fresh, such rocks have practically no porosity or permeability due to the introducing crystal structure. The groundwater potential in crystalline rock terrains depends therefore on emplacement processes such postas tectonism, and weathering which could lead to secondary porosity and permeability.

2. Groundwater Contaminants

Contaminants in groundwater are summarized under Inorganic, Organic, Microbiological, and Physical contaminants.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering http://www.ijmr.net.in email id- irjmss@gmail.com

2.1 Inorganic Contaminants

This is displayed in Table 1.

Table 1. Inorganic contaminants found in groundwater.

Contamina	Source to	Potential health			States.
nt	groundwater	& other effects	-	Bervllium	Occurs
Aluminum	Occurs naturally in some rocks and drainage from mines	Can precipitate out of water after treatment, causing increased turbidity or discoloured water.			naturally in soils, groundwater, and surface water. Often used in electrical
Antimony	Enters environment from natural weathering, industrial production, municipal waste disposal, and manufacturin g of flame retardants, ceramics, glass, batteries, fireworks and explosives.	Decreases longevity, alters blood levels of glucose and cholesterol in laboratory animals exposed at high levels over their lifetime.			industry equipment and components, nuclear power and space industry. Enters the environment from mining operations, processing plants, and improper waste
Arsenic	Enters environment from natural processes, industrial activities, pesticides, and industrial	Causes acute and chronic toxicity, liver and kidney damage, decreases blood hemoglobin. A carcinogen.			Found in low concentratio ns in rocks, coal, and petroleum and enters the ground.
	and industrial waste, smelting of copper, lead and zinc ore.			Cadmium	Found in low concentratio ns in rocks, coal and
Barium	Occurs naturally in	Can cause a variety of cardiac,			petroleum and enters the

tC	or- 3.570		
		some limestones, sandstones, and soils in the eastern United States.	gastro-intestinal, and neuromuscular effects. Associated with hypertension and cardiotoxicity in the animals.
	Beryllium	Occurs naturally in soils, groundwater, and surface water. Often used in electrical industry equipment and components, nuclear power and space industry. Enters the environment from mining operations, processing plants, and improper waste disposal. Found in low concentratio ns in rocks, coal, and petroleum and enters the ground.	Causes acute and chronic toxicity, can cause damage to lungs and bones. Possible carcinogen.
	Cadmium	Found in low concentratio ns in rocks, coal and petroleum and enters	Replaces zinc biochemically in the body and causes high blood pressure, liver and kidney

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering http://www.ijmr.net.in email id- irjmss@gmail.com

and

damage,

	groundwater	anemia. Destroys		leaching into	than Chromium III
	and surface	testicular tissue		groundwater,	and causes liver
	water when	and red blood		fossil fuel	and kidney
	dissolved by	cells. Toxic to		combustion,	damage, internal
	acidic waters.	aguatic biota.		cement-plant	hemorrhaging,
	Mav enter			emissions.	respiratory
	the			mineral	damage.
	environment			leaching, and	dermatitis. and
	from			waste	ulcers on the skin
	industrial			incineration.	at high
	discharge.			Used in metal	concentrations.
	mining			plating and as	
	waste, metal			a cooking-	
	nlating water			tower water	
	nines			additive	
	hatteries		Conner	Enters	Can cause
	naints and		copper	environment	stomach and
	nigments			from metal	intectinal distress
	pignicits,			nlating	liver and kidney
	stabilizors			industrial and	damage anemia
	and landfill			domostic	in high docor
	loachato			wasto	In high uoses.
Chlorido	May bo	Dotorioratos		mining and	advorso tasto and
Chionae	associated	plumbing water		mineral	significant
	with the	heaters and		leaching	significant to
	nresence of	municipal water-		leaching.	clothes and
	sodium in	works equipment			fivtures Essential
	drinking	at high lovels			trace element but
	water when	Above maximum			toxic to plants
	nresent in	contaminant			and algae at
	high				moderate levels
	concentratio	hecomes	Cyanida	Ofton used in	Doisoning is the
	ns Often	noticeable	Cyanice	oloctroplating	rocult of damage
	from	noticeable.		ctool	to coloon brain
	saltwater			, steel	and liver
	intrucion			plocessing,	and iver.
	minoral			plastics,	
	dissolution			fabrica	
	industrial and			fortilizer	
	domestic			production	
	wasto			production;	
Chromium	Entors	Chromium III is a		improper	
	environment			wasto	
	from	eccential		disposal	
	mining	element	Discoluped	Occur	May have an
	operations	Chromium IV ic	colide	occur paturally byt	ividy lidve all
	rupoff	much more toxic	sonus	also optors	accontability of
	runon and	much more toxic		also enters	acceptability of

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering

http://www.ijmr.net.in email id- irjmss@gmail.com

to

clothing

cells

delays

physical

mental

attention

hearing

learning

children.

carcinogen.

cause

and

damage,

Imparts a bitter astringent taste to water and a brownish colour

plumbing fixtures.

Affects red blood

development in babies and young children. Causes slight defects in

increase in blood pressure in some adults. Probable

Causes aesthetic

imparts brownish stains to laundry. Affects taste of water, and causes dark brown or black stains on plumbing fixtures.

economic

and

laundered

chemistry,

normal

and

span,

and

Can

slight

in

and

ahandoned

Vol.03 Issue-01, (January 2015) IJITE 570

environment

Impact Factor- 3					
water in general.					
May be indicative					

	entri entrene	mater in generali		asanaonea
	from man-	May be indicative		mines.
	made sources	of the presence of	Iron	Occurs
	such as	excess		naturally as a
	landfill	concentrations of		mineral from
	leachate,	specific		sediment and
	feedlots. or	substances not		rocks or from
	sewage. A	included in the		mining
	measure of	Safe Water		industrial
	the dissolved	Drinking Act		wastes and
	"calts" or	which would		corroding
	minorals in	which would		motol
	the water	abiactionable	Lagel	Thetan.
	the water.	objectionable.	Lead	Enters
	iviay also	Hign		environment
	include some	concentrations of		from
	dissolved	dissolved solids		industry,
	organic	shorten the		mining,
	compounds.	life of hot water		plumbing,
		heaters.		gasoline,
Fluoride	Occurs	Dcreases		coal, and as a
	naturally as	incidence of		water
	an additive to	tooth decay but		additive.
	municipal	high levels can		
	water	stain or mottle		
	supplies;	teeth. Causes		
	widely used	crippling bone		
	in industry.	disorder		
	,	(calcification of		
		the bones and		
		ioints) at verv		
		high levels	Manganes	Occurs
Hardness	Result of	Decreases the	o	naturally as a
naruness	metallic ions	lather formation	C	minoral from
	dissolved in	of coop and		codimont and
	dissolved in	or soap and		sediment and
	the water;	formation in hot		rocks or from
	reported as	formation in not-		mining and
	concentratio	water heaters		industrial
	n of calcium	and low pressure		waste.
	carbonate.	boilers at high		
	Calcium	levels.		
	carbonate is			
	derived from			
	dissolved			
	limestone or			
	discharges		Mercury	Occurs as an
	from			inorganic salt
	operating or			and as

Relatively nontoxic to animals but toxic to plants at high levels. Causes acute and chronic toxicity. Targets the A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering http://www.ijmr.net.in email id- irjmss@gmail.com

2321-1776

IJITE	Vol.03 Is	sue-01, (Imp	January act Fact	2015) or- 3.570	ISSN:
orga	nic kie	hour and	can		ovugonat

	organic	kidneys and can		oxygenated	
	mercury	cause nervous		water. Found	
	compounds.	system disorders.		in the highest	
	Enters the			levels in	
	environment			groundwater	
	from			under	
	industrial			extensively	
	waste,			developed	
	mining.			areas. Enters	
	pesticides.			the	
	coal.			environment	
	electrical			from	
	equipment			fertilizer.	
	(batteries.			feedlots, and	
	lamps			sewage.	
	switches).		Selenium	Enters	Causes acute and
	smelting, and		belefildin	environment	chronic toxic
	fossil fuel			from	effects in
	combustion			naturally	animals—"hlind
Nickel	Occurs	Damages the		occurring	staggers" in
Hicker	naturally in	heart and liver of		geologic	cattle
	soils	laboratory		sources	Nutritionally
	groundwater	animals exposed		sulphur and	essential element
	and surface	to large amounts		coal	at low doses but
	water Often	over their			tovic at high
	used in	lifetime			doses
	electronlating	incuinc.	Silver	Enters	Can cause
	stainless		Silver	environment	cargyria a blue-
	steel and			from ore	gray colouration
	allov			mining and	of the skin
	nroducts			nrocessing	mucous
	mining and			product	membranes
	refining			fabrication	eves and organs
Nitrate (as	Occurs	Toxicity results		and disposal	in humans and
Nitrogen)	naturally in	from the body's		Often used in	animals with
Niciogenj	mineral	natural		nhotogranhy	chronic exposure
	denosits	hreakdown of		electric and	emonie exposure.
	soils	nitrate to nitrite		electronic	
	seawater	Causes "bluebaby		equinment	
	freshwater	disease" or		sterling and	
	systems the	methemoglohine			
	atmosnhere	mia which		allov and	
	and hiota	threatens ovvgen-		solder	
	More stable	carrying canacity		Because of	
	form of	of the blood		great	
	combined			economic	
	nitrogen in				
	muogen m			value Ol	

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering http://www.ijmr.net.in email id- irjmss@gmail.com

	silver,		
	recovery		
	practices are		
	typically used		
	to minimize		
	loss.		
Sodium	Derived	Can be a health	
	geologically	risk factor for	
	from	those individuals	
	leachate of	on a low-sodium	
	surface and	diet.	
	underground		
	deposits of		
	salt and		
	decompositio		
	minerais.		
	Human		
	activities		
	contribute		
	through de-		
	icing and		
	washing		
	products.		
Sulphate	Elevated	Forms hard scales	
	concentratio	on boilers and	
	ns may result	heat exchangers;	
	from	can change the	
	saltwater	taste of water,	
	intrusion,	and has a laxative	
	mineral	effect in high	
	dissolution,	doses.	
	and domestic		
	or industrial		
	waste.		
Thallium	Enters the	Damages kidnevs	
maniani	environment	liver brain and	
	from soils	intestines in	
		laboratory	
	alectronice	animale when	
		aininais Wilell	
	pharmaceutic	given in nigh	
	dis	uoses over their	
	manufacturin	lifetime.	
	g, glass, and		
	alloys.		
Zinc	Found	Aids in the	
	naturally in	healing of	

water, most	wounds. Causes
frequently in	no ill health
areas where	effects except in
it is minned.	very high doses.
Enters the	Imparts an
environment	undesirable taste
from	to water. Toxic to
industrial	plants at high
waste, metal	levels.
plating, and	
plumbing,	
and is a	
major	
component	
of sludge.	

2.2 Organic Contaminants

These contaminants are shown in Table 2.

Table 2. Organic Contaminants found inground water

	Contaminan	Sources to	Potential
s	ts	groundwater	health and
d		0	other effects
s;	Volatile	Enters the	Can cause
e	organic	environment	cancer and
r,	compounds	when used to	liver damage,
'e	-	make plastics,	anemia,
h		dyes, rubbers,	gastrointestin
		polishes,	al disorders,
		solvents, crude	skin irritation,
		oil,	blurred vision,
		insecticides,	exhaustion,
s,		inks, varnishes,	weight loss,
d		paints,	damage to the
n		disinfectants,	nervous
		gasoline	system, and
n		products,	respiratory
h		pharmaceutica	tract irritation.
ir		ls,	
		preservatives,	
		spot removers,	
		paint	
е		removers,	
of		degreasers,	

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering

Cause

many

and

Pesticides

more.

Enters

2.3 Microbiological contaminants

These contaminants are displayed in Table 3.

Table 2. Microbiological Conteminante found

	environment as herbisides., insecticides,	poisoning, Table 3 headaches, dizziness, in Grou		Table 3: Micro in Groundwater	able 3: Microbiological Contaminants found Groundwater		
	fungicides, rodenticides, and algicides.	gastinointestin al disturbance, numbness, weakness, and cancer.		Contaminants	Sources of groundwater	Potential health and other effects	
		Destroys nervous system, thyroid, reproductive system, liver and kidney.		bacteria	in the environment from soils and plants and in the intestines of humans and other warm-	viruses, and parasites can cause polio, cholera, typhoid fever,	
Plasticizers, Chlorinated solvents, benzo [a] pyrene, and dioxin.	Used as sealant, linings, solvents, pesticides, plasticides, components of gasoline, disinfectant, and wood preservative. Enters the environment from improper waste disposal, leaching runoff, leaking storage tank, and industrial	Causes cancer. Damages nervous and reproductive systems, kidney, stomach, and liver.			blooded animals. Used as an indicator for the presence of pathogenic bacteria, viruses, and parasites from domestic sewage, animal waste, or plant or soil material.	dysentery, and infectious hepatitis.	

inadequate treatment,

disinfection

demand.

Potential

high

for

High pH causes a bitter taste,

pipes

the

the

for

or

other

water-

water

and

of

using appliances

become

chlorine,

thereby causing

additional chlorine when pH is high. Low pH water will

corrode

and

dissolve metals

substances.

need

encrusted;

depresses the effectiveness

disinfection of

and

2.4 Physical Conterminants

They are in Table 4.

Table 4. Physical characteristics of ground water

Contaminant	Sources to	Potential		production of
	groundwater	health and		excess
		other effects		amounts of
Turbidity	Caused by the	Objectionable		disinfection
	presence of	for aesthetic		byproducts.
	suspended	reasons.	рН	Indicates, by
	matter such	Indicative of		numerical
	as clay, silt,	clay or other		expression,
	and fine	inert		the degree to
	particles of	suspended		which water is
	organic	particles in		alkaline or
	matter.	drinking water.		acidic.
	plankton, and	May not		Represented
	other	adverselv		on a scale of
	microsconic	affect health		0-14, where 0
	organisms. A	but may cause		is the most
	measure of	need for		acidic, 14 is
	how much	additional		the most
	light can filter	treatment		alkaline, and 7
	through the	Following		is neutral.
	water sample	rainfall		
	water sample.	variations in		
		groundwater		
		turbidity may		
		he an indicator		
		of surface		
		contamination		
Colour	Can be caused	Suggests that		
Colour	by decaying	treatment is		
	by uccaying	noodod No	Odour	Certain
	organic	health		odours may
	organic	concorne		be indicative
	matter,	A asthatically		of organic or
	copper, iron,	Aesthetically		non-organic
	anu	unpieasing.		contaminants
	manganese,			that originate
	which may be			from
	objectionable.			municinal or
	indicative of			industrial
	large amounts			wasta
	ot organic			discharges or
	chemicals,			uischarges of

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering

	from natural	
	sources.	
Taste	Some	
	substances	
	such as	
	certain	
	organic salts	
	produce a	
	taste without	
	an odour and	
	can be	
	evaluated by	
	a taste test.	
	Many other	
	sensations	
	ascribed to	
	the sense of	
	taste actually	
	are odours,	
	even though	
	the sensation	
	is not noticed	
	until the	
	material is	
	taken into the	
	mouth.	

Source: [12]

3. Discussion

Raw water contains natural impurities or/and impurities arising from human activities. Most of the time, these impurities are above tolerable levels as specified by various water quality standards. Hence, it is required that water from different sources be examined and treated if necessary. Harmful contaminants present in water may cause liver and kidney diseases, cancer, typhoid, diarrhea, and other water related diseases.

Conclusion

It is recommended that there should be monitoring of locations of landfills and septic tanks sites. According to [13], solid waste dump sites should be discouraged, since this is not a solid waste disposal method, being source of leachate that enters groundwater. Location of these facilities should not be very close to wells to minimize incidence of leachate entering our groundwater and polluting it. It is also recommended that there should be periodic examination of water to ensure its potability before usage.

The health departments of local government authorities need to improve on their effectiveness in the monitoring of control efforts.

Moreover, government policies on waste disposal and management should be enacted and strictly enforced. These policies should encompass replacement of dumpsites by sanitary/ and fills to ensure proper waste disposal practice that is environmentally safe and with public health protection. Adoption of sanitary landfill ensures that leachates are protected from entering the groundwater by usage of clay or plastic hiring at the bottom of landfills to prevent percolators of leachate into groundwater reserve.

References:

- 1. Clarke. R; Lawrence A.R; Foster S.S.D(1995). Groundwater, a threatened resource. UNEP environ. Library, 15pp.
- 2. Uma, K.O and Egboka, BCE(1985). resource of Owerri and its Water environs, Imo state, Nigeria. Niger. J. Mineral Geol, 22:57-62.
- 3. Madsen, E.L; Ghiorse, W.C.(1993). Groundwater micro-biology: subsurface ecosystem processes. In aquatic micro-biology, An ecology approach(ed. T.E. ford), (pp.167-5215)
- 4. Foster S.S.D; Morris, B.L; Lawrence A.R; Chilton, P.J. (1999). Groundwater

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in IT and Engineering http://www.ijmr.net.in email id- irjmss@gmail.com

impacts and issues in developing cities: an introductory review. (In proceeding of IAH XXVII congress "groundwater in then urban environment" (II/IAH Int. contributions of hydrogeol. Nottingham)

- Sundary S.A; Pannda, U; Nayak, C; Dinabandhu, B. (2005). Multivariate statistical Techniques for the evaluation of spatial and temporal variations in water quality of Gomti river (India). A case study. Water res, 38:3980-3992.
- 6. WHO,(2000). A report on global water supply and sanitation Assessment.
- Rizwan, U; Riffat, N.m; and Abdul, Q (2009). Assessment of groundwater contamination in an individual or industrial city, Sialkot, Pakistan. Journal of environment science and technology, vol. 3, pp. 429-446.
- Davis, S.N and Royer, J.M. De wiest (1966). Hydrogeology, New York, John Wiley and sons pp.459-463.
- Ako, B.D(1979). Geophysical propensity for groundwater in parts of southwestern Nigeria. Unpublished PhD Thesis.Department of geology, University of Ife, Ile-ife, Nigeria p.371.
- 10. Oloke A.I(1997). Microbial analysis of hawked water. African Journal of science, volume 1, pp 22-42.
- Longe E.O and Balogun, M.R.(2010). Groundwater quality assessment near a municipal landfill, Lagos, Nigeria. Research Journal of applied sciences, Engineering and Technology, 2: 39-44.
- Waller, R. M.(1982). Groundwater and the rural homeowner pamphlet, US Geological Survey.
- 13. Ezugwu, C. N. (2006). A Master of Engineering Thesis, Department of Civil

Engineering, Nnamdi Azikiwe University, Awka.