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ABSTRACT:  

The study of common fixed points of different contractive mappings has concentrated around the continuous mappings for 

many years. However, in the last decade it has been shown that the study of common fixed points of mappings which are 

discontinuous at their fixed points is also fascinating. In this regard, we define f-reciprocal continuity, a generalization of 

continuity but independent of both reciprocal continuity and g-reciprocal continuity. Also, we have proved some common 

fixed point theorems which are illustrated by suitable examples. 
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1. INTRODUCTION AND PRELIMINARIES 

In 1980's, Rhoades [1] posed an open problem-"Whether there exists a contractive definition which is strong 

enough to generate a fixed point, but which does not force the map to be continuous at the fixed point". This 

problem has remained open for more than a decade. The work along these lines was initiated by Pant [2,4], who 

established the existence of fixed points for mappings which may be discontinuous at their fixed points and as well 

as for non compatible mappings. Interestingly, the best examples of non compatible mappings are found among the 

pairs of mappings which are discontinuous at their common fixed points. Later on, Pant [4] proved the common 

fixed point theorem without any continuity requirement by introducing the notion of reciprocal continuity, which is 

mainly applicable to the setting of compatible mappings. To extend the scope of study of fixed points from the class 

of compatible mappings to a wider class of non compatible and discontinuous mappings, Pant [5] generalized the 

concept of reciprocal continuity to weak reciprocal continuity. Many interesting works on weak reciprocal 

continuity have come through by many authors (see [8]-[11]).  

Very recently, in [6] Pant et.al. have introduced two more generalized concepts. Firstly, g-reciprocal continuity 

which is a generalization of continuity, but independent of reciprocal continuity (see examples in[7]). Secondly, 

Pseudo compatible, a proper generalization of occasionally weakly compatible. By using these two newly 

introduced concepts Pant et.al.[6] have proved some common fixed point theorems. Motivated by these works of 

Pant [6] and following the lines of Pant, we define f-reciprocal continuity which is a generalization of continuity 

and independent of both reciprocal and g-reciprocal continuity. Also, we have proved some common fixed point 

theorems by using this new notion and pseudo compatibility. The suitable examples are demonstrated to exhibit the 

utility of the main results. Our results extend and generalize the results of Pant [6] and many more results in the 

literature. 

Before proceeding to further, we recollect some basic definitions which are needed in our main results.  

 

Definition 1.1:[11]  Two self maps f and g of a metric space (X, d) are called compatible if 

𝑙𝑖𝑚𝑛→∞  𝑑(𝑓𝑔𝑥𝑛 , 𝑔𝑓𝑥𝑛)  =  0 , whenever {𝑥𝑛}  is a sequence in X such that  𝑙𝑖𝑚𝑛→∞𝑓𝑥𝑛 = 𝑙𝑖𝑚𝑛→∞𝑔𝑥𝑛  =  𝑡 for 
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some t in X. Thus the mappings f and g will be non compatible if there exists at least one sequence {𝑥𝑛} such that 

𝑙𝑖𝑚𝑛→∞𝑓𝑥𝑛 = 𝑙𝑖𝑚𝑛→∞𝑔𝑥𝑛  =  𝑡 for some t in X but 𝑙𝑖𝑚𝑛→∞  𝑑(𝑓𝑔𝑥𝑛 , 𝑔𝑓𝑥𝑛) is either nonzero or nonexistent. 

Definition 1.2: [4] Two self mappings f and g of a metric space (X, d) are called reciprocally continuous if 

  𝑙𝑖𝑚𝑛→∞  𝑓𝑔𝑥𝑛  =  𝑓𝑡  and   𝑙𝑖𝑚𝑛→∞  𝑔𝑓𝑥𝑛  =  𝑔𝑡  whenever {𝑥𝑛}  is a sequence in X such that 𝑙𝑖𝑚𝑛→∞𝑓𝑥𝑛 =

𝑙𝑖𝑚𝑛→∞𝑔𝑥𝑛  =  𝑡 for some t in X. 

Definition 1.3:[5] Two self mappings f and g of a metric space (X, d) are called weakly reciprocally continuous if 

  𝑙𝑖𝑚𝑛→∞𝑓𝑔𝑥𝑛  =  𝑓𝑡  or   𝑙𝑖𝑚𝑛→∞𝑔𝑓𝑥𝑛  =  𝑔𝑡  whenever {𝑥𝑛}  is a sequence in X such that 𝑙𝑖𝑚𝑛→∞𝑓𝑥𝑛 =

𝑙𝑖𝑚𝑛→∞𝑔𝑥𝑛  =  𝑡 for some t in X. 

Definition 1.4:[6] Two self mappings f and g of a metric space (X, d) are called g- reciprocally continuous iff 

  𝑙𝑖𝑚𝑛→∞𝑓𝑓𝑥𝑛  =  𝑓𝑡  and   𝑙𝑖𝑚𝑛→∞𝑔𝑓𝑥𝑛  =  𝑔𝑡  whenever {𝑥𝑛}  is a sequence  such that 𝑙𝑖𝑚𝑛→∞𝑓𝑥𝑛 =

𝑙𝑖𝑚𝑛→∞𝑔𝑥𝑛  =  𝑡 for some t in X. 

Definition 1.5: Let f and g be self mappings of a metric space (X,d). Then for a sequence {𝑦𝑛} in X satisfying 

𝑙𝑖𝑚𝑛→∞  𝑓𝑦𝑛  =  𝑙𝑖𝑚𝑛→∞  𝑔𝑦𝑛 ,  a sequence {𝑧𝑛} will be called an associated sequence if 𝑓𝑦𝑛  =  𝑔𝑧𝑛   or  𝑔𝑦𝑛 =

𝑓𝑧𝑛  and 𝑙𝑖𝑚𝑛→∞  𝑓𝑧𝑛  =  𝑙𝑖𝑚𝑛→∞  𝑔𝑧𝑛 .  

Definition 1.6:[6] Two self mappings f and g  of a metric space (X,d) will be defined to be pseudo compatible if 

and only if whenever the set of sequences  𝑥𝑛  satisfying 𝑙𝑖𝑚𝑛→∞  𝑓𝑥𝑛  =  𝑙𝑖𝑚𝑛→∞  𝑔𝑥𝑛    is nonempty, there exists 

a  sequence {𝑦𝑛}  such that  𝑙𝑖𝑚𝑛→∞  𝑓𝑦𝑛  =  𝑙𝑖𝑚𝑛→∞  𝑔𝑦𝑛 = 𝑡  (say), 𝑙𝑖𝑚𝑛→∞  𝑑 𝑓𝑔𝑦𝑛 , 𝑔𝑓𝑦𝑛 = 0  and 

𝑙𝑖𝑚𝑛→∞  𝑑 𝑓𝑔𝑧𝑛 , 𝑔𝑓𝑧𝑛 = 0 for any associated sequence  {𝑧𝑛} of  {𝑦𝑛}. 

Theorem 1.7:[6] Let f and g be g-reciprocally continuous self mappings of a complete metric space (X,d) such that 

(i)   𝑓𝑋  𝑔𝑋   

(ii)  𝑑(𝑓𝑥, 𝑓𝑦)  ≤  𝑘 𝑑(𝑔𝑥, 𝑔𝑦) , 𝑘 ∈  0,1 . 

If f and g are pseudo compatible, then f and g have a unique common fixed point. 

Theorem 1.8:[6] Let f and g be g-reciprocally continuous non compatible self mappings of a metric space (X,d) 

such that 

(i)    𝑓𝑋  𝑔𝑋   

(ii)  𝑑(𝑓𝑥, 𝑓𝑦) <  𝑚𝑎𝑥{ 𝑑(𝑔𝑥, 𝑔𝑦),
𝑘 𝑑 𝑓𝑥 ,𝑔𝑥  +𝑑 𝑓𝑦 ,𝑔𝑦   

2
,
 𝑑 𝑓𝑥 ,𝑔𝑦  +𝑑 𝑓𝑦 ,𝑔𝑥   

2
},     1 ≤ 𝑘 < 2. 

(iii) 𝑑(𝑥, 𝑓𝑥)  ≠ 𝑚𝑎𝑥(𝑑(𝑥, 𝑔𝑥), 𝑑(𝑓𝑥, 𝑔𝑥)), 

whenever right-hand side is nonzero. If f and g are pseudo compatible, then f and g have a unique common fixed 

point. 

 

2. MAIN RESULT 

First we present a new notion, f-reciprocal continuity which is a generalization of continuity. 

Definition 2.1: Two self mappings f and g of a metric space (X, d) are called f-reciprocally continuous iff 

𝑙𝑖𝑚𝑛→∞𝑓𝑔𝑥𝑛  =  𝑓𝑡  and 𝑙𝑖𝑚𝑛→∞𝑔𝑔𝑥𝑛  =  𝑔𝑡  whenever {𝑥𝑛}  is a sequence in X such that 𝑙𝑖𝑚𝑛→∞𝑓𝑥𝑛 =

𝑙𝑖𝑚𝑛→∞𝑔𝑥𝑛  =  𝑡 for some t in X. 

If f and g are continuous, then they are obviously f-reciprocally continuous but, the converse is not true. Also, it 

may be observed that f-reciprocal continuity is independent of both reciprocal continuity and g-reciprocal 

continuity. The following three examples clearly demonstrate this fact. 

Example 2.2:   Let 𝑋 =  [2,10] and d be the usual metric on  X. Define f, g : X → X  by  

𝑓2 = 2, 𝑓𝑥 = 9  if  2 < 𝑥 ≤ 5  𝑎𝑛𝑑  𝑓𝑥 =
𝑥+1

3
  if   𝑥 > 5   

𝑔2 = 2  if  𝑥 = 2 𝑎𝑛𝑑 𝑥 > 5,  𝑔𝑥 = 4  if  2 < 𝑥 ≤ 5. 
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 Let  𝑥𝑛 =  5 +
1

𝑛
   be a sequence in X. Then 𝑓𝑥𝑛 = 2 +

1

3𝑛
→ 2 and 𝑔𝑥𝑛 → 2.  𝑓𝑔𝑥𝑛  =  𝑓 2  = 2,     

𝑓𝑓𝑥𝑛 = 𝑓  2 +
1

3𝑛
 → 9,    𝑔𝑓𝑥𝑛 = 𝑔 2 +

1

3𝑛
 → 4   and  𝑔𝑔𝑥𝑛  =  𝑔 2  =  2.  Thus  𝑙𝑖𝑚𝑛→∞  𝑓𝑔𝑥𝑛  =  𝑓2  and 

𝑙𝑖𝑚𝑛→∞  𝑔𝑔𝑥𝑛  =  𝑔2.  Hence f and g are f-reciprocally continuous mappings but neither g-reciprocally continuous 

nor reciprocally continuous. 

Example 2.3:   Let 𝑋 =  [2,10] and d be the usual metric on  X. Define f, g : X → X  by  

 𝑓𝑥 = 2  if  𝑥 = 2 𝑎𝑛𝑑 𝑥 > 5, 𝑓𝑥 =
𝑥+7

3
  if   2 < 𝑥 ≤ 5    

𝑔2 = 2  ,  𝑔𝑥 = 6  if  2 < 𝑥 ≤ 5, 𝑔𝑥 =
𝑥+5

5
  if  𝑥 > 5  . 

 Let  𝑥𝑛 =  5 +
1

𝑛
   be a sequence in X. Then 𝑓𝑥𝑛 → 2  and 𝑔𝑥𝑛 = 2 +

1

5𝑛
→ 2.  𝑓𝑔𝑥𝑛 = 𝑓  2 +

1

5𝑛
  → 3, 

  𝑓𝑓𝑥𝑛 = 𝑓 2 = 2,    𝑔𝑓𝑥𝑛 = 𝑔 2 = 2   and  𝑔𝑔𝑥𝑛  =  𝑔  2 +
1

5𝑛
   → 6. Thus  𝑙𝑖𝑚𝑛→∞  𝑓𝑓𝑥𝑛  =  𝑓2  and 

𝑙𝑖𝑚𝑛→∞  𝑔𝑓𝑥𝑛  =  𝑔2.  Hence f and g are g-reciprocally continuous mappings but neither f-reciprocally continuous 

nor reciprocally continuous. 

Example 2.4:   Let 𝑋 =  [1,10] and d be the usual metric on  X. Define f, g : X → X by  

   𝑓𝑥 =
𝑥+3

2
   if   𝑥 < 6 and 𝑓𝑥 = 3   if 𝑥 ≥ 6  

𝑔3 = 3  ,  𝑔𝑥 = 8 if 𝑥 < 3 and  3 < 𝑥 < 6, 𝑔𝑥 =
𝑥

2
  if 𝑥 ≥ 6  . 

 Let  𝑥𝑛 =  6 +
1

𝑛
   be a sequence in X. Then 𝑓𝑥𝑛 → 3  and 𝑔𝑥𝑛 = 3 +

1

2𝑛
→ 3.  𝑓𝑔𝑥𝑛 =  𝑓  3 +

1

2𝑛
  → 3, 

𝑔𝑓𝑥𝑛 = 𝑔 3 = 3   and 𝑔𝑔𝑥𝑛  =  𝑔  3 +
1

2𝑛
   → 8. Thus  𝑙𝑖𝑚𝑛→∞  𝑓𝑔𝑥𝑛  =  𝑓3 and 𝑙𝑖𝑚𝑛→∞  𝑔𝑓𝑥𝑛  =  𝑔3.  Hence 

f and g are reciprocally continuous mappings but not f-reciprocally continuous.  

We now state and prove our first main result. 

 Theorem 2.5:  Let f and g be f-reciprocally continuous self mappings of a metric space (X,d) such that 

 (i)   𝑓𝑋  𝑔𝑋  and fX is complete 

(ii)  𝑑 𝑓𝑥, 𝑓𝑦 ≤  𝑎 𝑑 𝑔𝑥, 𝑔𝑦 + 𝑏 𝑑 𝑓𝑥, 𝑔𝑥 + 𝑐 𝑑(𝑓𝑦, 𝑔𝑦)      with  𝑎, 𝑏, 𝑐 ∈ [0, 1)  and  a +b+c <1. 

 If f and g are pseudo compatible, then f and g have a unique common fixed point. 

Proof: 

Let 𝑥𝑜  be any point in X. Since 𝑓𝑋    𝑔𝑋, there exists a sequence of points   𝑥𝑜 , 𝑥1 , 𝑥2, . . . , 𝑥𝑛 , … such that 𝑥𝑛+1 is 

in the preimage under g of 𝑓𝑥𝑛  .  

i.e.   𝑓𝑥𝑜  =  𝑔𝑥1, 𝑓𝑥1  =  𝑔𝑥2, … , 𝑓𝑥𝑛 = 𝑔𝑥𝑛+1 , … 

Define a sequence {𝑆𝑛} in X by   

                                𝑆𝑛  =  𝑓𝑥𝑛  =  𝑔𝑥𝑛+1     for  n = 0,1,2,…                                              

Clearly {𝑆𝑛} is a sequence in fX.  

Now, we claim that {𝑆𝑛}is a cauchy sequence in fX. Consider 

𝑑(𝑆𝑛 , 𝑆𝑛+1)   =  𝑑(𝑓𝑥𝑛 , 𝑓𝑥𝑛+1) 

            ≤  𝑎 𝑑(𝑔𝑥𝑛 , 𝑔𝑥𝑛+1)  +  𝑏 𝑑(𝑓𝑥𝑛 , 𝑔𝑥𝑛)  +  𝑐 𝑑(𝑓𝑥𝑛+1, 𝑔𝑥𝑛+1) 

                      =  𝑎 𝑑(𝑆𝑛−1, 𝑆𝑛)  +  𝑏 𝑑(𝑆𝑛 , 𝑆𝑛−1)  +  𝑐 𝑑(𝑆𝑛+1 , 𝑆𝑛)  

𝑖. 𝑒. 𝑑(𝑆𝑛 , 𝑆𝑛+1)  ≤  𝑘 𝑑(𝑆𝑛−1, 𝑆𝑛)  ≤  𝑘𝑛  𝑑(𝑆0, 𝑆1), 𝑤𝑕𝑒𝑟𝑒   𝑘 =   
𝑎 + 𝑏

1 − 𝑐
  <  1. 

Also for every integer 𝑝 >  0, we have  

𝑑(𝑆𝑛 , 𝑆𝑛+𝑝)  ≤   𝑑(𝑆𝑛 , 𝑆𝑛+1)  +  𝑑(𝑆𝑛+1 , 𝑆𝑛+2) + . . . +𝑑(𝑆𝑛+𝑝−1, 𝑆𝑛+𝑝)  

           ≤  𝑘𝑛  (1 +  𝑘 +  𝑘2  + . . . + 𝑘𝑝−1) 𝑑(𝑆0, 𝑆1) 

          ≤   
1

1−𝑘
  𝑘𝑛  𝑑(𝑆0 , 𝑆1) 
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That is 𝑑(𝑆𝑛 , 𝑆𝑛+𝑝)  →  0 as 𝑛 →   ∞. Therefore {𝑆𝑛} is a cauchy sequence in fX. 

Since fX is complete, there exists a point  𝑡 ∈ 𝑓𝑋 such that 𝑆𝑛  →   𝑡 as 𝑛 → ∞.  

             Moreover, 𝑆𝑛  =  𝑓𝑥𝑛  =  𝑔𝑥𝑛+1  →   𝑡. 

Now f and g are pseudo compatible implies there exists a sequence {𝑦𝑛}  such that 𝑓𝑦𝑛 → 𝑢, 𝑔𝑦𝑛 → 𝑢  and 

𝑙𝑖𝑚𝑛→∞  𝑑 𝑓𝑔𝑦𝑛 , 𝑔𝑓𝑦𝑛 = 0  . 

Since 𝑓𝑋    𝑔𝑋, for each  𝑦𝑛    there exists a 𝑧𝑛   in X such that 𝑓𝑦𝑛 = 𝑔𝑧𝑛   ∀𝑛. 

Now we prove that 𝑓𝑧𝑛 → 𝑢. Consider 

𝑑(𝑓𝑦𝑛 , 𝑓𝑧𝑛)  ≤  𝑎 𝑑(𝑔𝑦𝑛 , 𝑔𝑧𝑛)  +  𝑏 𝑑(𝑓𝑦𝑛 , 𝑔𝑦𝑛)  +  𝑐 𝑑(𝑓𝑧𝑛 , 𝑔𝑧𝑛) 

      on letting 𝑛 →   ∞ we get  1 − 𝑐 𝑑 𝑢, 𝑓𝑧𝑛 ≤ 0,   which gives 𝑓𝑧𝑛 → 𝑢 since 𝑐 < 1. 

Therefore {𝑦𝑛} and  {𝑧𝑛} are associated sequences and 𝑙𝑖𝑚𝑛→∞  𝑑 𝑓𝑔𝑧𝑛 , 𝑔𝑓𝑧𝑛 = 0 .  

𝑖. 𝑒. 𝑙𝑖𝑚𝑛→∞  𝑓𝑦𝑛  =  𝑙𝑖𝑚𝑛→∞  𝑔𝑦𝑛 = 𝑙𝑖𝑚𝑛→∞  𝑓𝑧𝑛  =  𝑙𝑖𝑚𝑛→∞  𝑔𝑧𝑛 = 𝑢. 

Further, f- reciprocal continuity of f and g implies that 𝑓𝑔𝑦𝑛  →  𝑓𝑢 and 𝑔𝑔𝑦𝑛  →  𝑔𝑢. 

Since 𝑙𝑖𝑚𝑛→∞  𝑑 𝑓𝑔𝑦𝑛 , 𝑔𝑓𝑦𝑛 = 0  , we have 𝑔𝑓𝑦𝑛 = 𝑔𝑔𝑧𝑛  →  𝑓𝑢 . Similarly,  𝑓𝑔𝑧𝑛  →  𝑓𝑢  and 𝑔𝑔𝑧𝑛  →  𝑔𝑢 . 

Hence 𝑓𝑢 = 𝑔𝑢.  Now we prove that 𝑓𝑢 = 𝑢. Consider  

𝑑(𝑓𝑢, 𝑓𝑧𝑛)  ≤  𝑎 𝑑(𝑔𝑢, 𝑔𝑧𝑛)  +  𝑏 𝑑(𝑓𝑢, 𝑔𝑢)  +  𝑐 𝑑(𝑓𝑧𝑛 , 𝑔𝑧𝑛) 

      on letting 𝑛 →   ∞ we get  1 − 𝑎 𝑑 𝑓𝑢, 𝑢 ≤ 0,   which gives 𝑢 = 𝑓𝑢 = 𝑔𝑢 since 𝑎 < 1. 

Therefore u is a common fixed point of f and g. To prove the uniqueness, let u and v be two common fixed points of 

f and g. Then  𝑢 = 𝑓𝑢 = 𝑔𝑢 and 𝑣 = 𝑓𝑣 = 𝑔𝑣.  Consider  

𝑑 𝑢, 𝑣 = 𝑑(𝑓𝑢, 𝑓𝑣)  ≤  𝑎 𝑑(𝑔𝑢, 𝑔𝑣)  +  𝑏 𝑑(𝑓𝑢, 𝑔𝑢)  +  𝑐 𝑑(𝑓𝑣, 𝑔𝑣) 

on letting 𝑛 →   ∞ we get 𝑑 𝑢, 𝑣 ≤ 𝑎𝑑(𝑢, 𝑣),   which gives 𝑢 = 𝑣 since 𝑎 < 1. 

Therefore u is the unique common fixed point of f and g. 

 

The above theorem is illustrated by the following example. 

 

Example 2.6:  Let 𝑋 =  [1,10] and d  be the usual metric on  X. Define 𝑓, 𝑔 ∶  𝑋 →  𝑋 by  

𝑓𝑥 =
𝑥+3

2
 if  𝑥 ≤ 3,  𝑓𝑥 = 2 if 𝑥 > 3 

𝑔𝑥 =
2𝑥+3

3
 if  𝑥 ≤ 3, 𝑔𝑥 = 9 if 𝑥 > 3 

Then f and g satisfy all the conditions of Theorem 2.5 and have a unique common fixed point at 𝑥 =  3. Further, f 

and g satisfy the contraction condition (ii) for 𝑎 =  
1

3
 , 𝑏 =  

1

3
 , 𝑐 =  

1

4
.  The mappings f and g are f-reciprocally 

continuous. To see this, let {𝑥𝑛} be a sequence in X such that 𝑓𝑥𝑛  →  𝑡 and  𝑔𝑥𝑛  →  𝑡 for some t. Then 𝑡 =  3 and 

either 𝑥𝑛  =  3 for each n or 𝑥𝑛  =  3 − 
1

𝑛
  . If 𝑥𝑛  =  3 for each n then 𝑓𝑥𝑛 = 3, 𝑔𝑥𝑛  = 3, 𝑓𝑔𝑥𝑛   =  𝑓3 =  3 

and 𝑔𝑔𝑥𝑛  =  𝑔3 =  3.   If 𝑥𝑛  =  3 − 
1

𝑛
  then 𝑓𝑥𝑛  =  3, 𝑔𝑥𝑛  =  3 − 

2

3𝑛
 →  3, 𝑓𝑔𝑥𝑛  =  𝑓  3 − 

2

3𝑛
  =  3 −

 
1

3𝑛
 →  3 = 𝑓3  and 𝑔𝑔𝑥𝑛  =  𝑔  3 − 

2

3𝑛
  = 3 −

4

9𝑛
 →  3 = 𝑔3. Thus 𝑙𝑖𝑚𝑛→∞  𝑓𝑔𝑥𝑛  =  𝑓3 and 𝑙𝑖𝑚𝑛→∞  𝑔𝑔𝑥𝑛  =

 𝑔3. Hence f and g are f-reciprocally continuous mappings.  Also f and g are pseudo compatible. To see this 

consider the sequence  𝑥𝑛 =  3 −
1

𝑛
  . Then 𝑓𝑥𝑛 → 3 and 𝑔𝑥𝑛 → 3. Consider another sequence {𝑦𝑛} = 3 for all n. 

Then 𝑓𝑦𝑛 → 3,  𝑔𝑦𝑛 → 3 and 𝑙𝑖𝑚𝑛→∞  𝑑 𝑓𝑔𝑦𝑛 , 𝑔𝑓𝑦𝑛 = 0  . 

If {𝑧𝑛} is an associated sequence of {𝑦𝑛} such that 𝑓𝑦𝑛 = 𝑔𝑧𝑛    ∀𝑛  and 𝑙𝑖𝑚𝑛→∞ 𝑓𝑧𝑛  =  𝑙𝑖𝑚𝑛→∞ 𝑔𝑧𝑛 ,  then 𝑧𝑛 =

3   ∀𝑛   and 𝑙𝑖𝑚𝑛→∞ 𝑑 𝑓𝑔𝑧𝑛 , 𝑔𝑓𝑧𝑛 = 0.  Therefore f and g are pseudo compatible. 
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It is well known that strict contractive conditions do not ensure the existence of fixed points unless very strong 

conditions like compactness are assumed. But the next result demonstrates that the generalized strict contractive 

condition ensure the existence of common fixed point under the notion of f-reciprocal continuity. 

 

Theorem 2.7:  Let f and g be f-reciprocally continuous non compatible self mappings of a metric space      (X, d) 

such that 

  (i)     fX  gX  

 (ii)    𝑑 𝑓𝑥, 𝑓𝑦 < 𝑚𝑎𝑥  𝑘𝑑 𝑔𝑥, 𝑔𝑦 ,
𝑘

2
 𝑑 𝑓𝑥, 𝑔𝑥 + 𝑑 𝑓𝑦, 𝑔𝑦  ,

𝑘

2
  𝑑 𝑓𝑥, 𝑔𝑦 + 𝑑 𝑓𝑦, 𝑔𝑥   , ∀𝑥 ≠ 𝑦   

         where    0 < 𝑘 < 1. 

 If f and g are pseudo compatible, then f and g have a unique common fixed point. 

Proof: 

 Since f and g are non compatible mappings, there exists a sequence {𝑥𝑛} in X such that 𝑙𝑖𝑚𝑛→∞𝑓𝑥𝑛 =

𝑙𝑖𝑚𝑛→∞𝑔𝑥𝑛 =  𝑡 for some t in X but either 𝑙𝑖𝑚𝑛→∞ 𝑑(𝑓𝑔𝑥𝑛 , 𝑔𝑓𝑥𝑛)  ≠  0 or the limit does not exist.   

Now f and g are pseudo compatible implies there exists a sequence {𝑦𝑛}  such that 𝑓𝑦𝑛 → 𝑢, 𝑔𝑦𝑛 → 𝑢  and 

𝑙𝑖𝑚𝑛→∞  𝑑 𝑓𝑔𝑦𝑛 , 𝑔𝑓𝑦𝑛 = 0  . 

Since    𝑓𝑋  𝑔𝑋, for each 𝑦𝑛  there exists a 𝑧𝑛  in X such that  𝑓𝑦𝑛  =  𝑔𝑧𝑛    ∀𝑛 .  

Now we prove that 𝑓𝑧𝑛 → 𝑢. Consider, 

𝑑(𝑓𝑦𝑛 , 𝑓𝑧𝑛) <  𝑚𝑎𝑥  𝑘𝑑 𝑔𝑦𝑛 , 𝑔𝑧𝑛 ,
𝑘

2
 𝑑 𝑓𝑦𝑛 , 𝑔𝑦𝑛 +  𝑑 𝑓𝑧𝑛 , 𝑔𝑧𝑛   ,

𝑘

2
  𝑑 𝑓𝑦𝑛 , 𝑔𝑧𝑛 + 𝑑 𝑓𝑧𝑛 , 𝑔𝑦𝑛     

on letting 𝑛 →   ∞ we get  1 −
𝑘

2
 𝑑 𝑢, 𝑓𝑧𝑛 ≤ 0,   which gives 𝑓𝑧𝑛 → 𝑢 since 𝑘 < 1. 

Therefore {𝑦𝑛} and  {𝑧𝑛} are associated sequences and 𝑙𝑖𝑚𝑛→∞  𝑑 𝑓𝑔𝑧𝑛 , 𝑔𝑓𝑧𝑛 = 0 .  

𝑖. 𝑒. 𝑙𝑖𝑚𝑛→∞  𝑓𝑦𝑛  =  𝑙𝑖𝑚𝑛→∞  𝑔𝑦𝑛 = 𝑙𝑖𝑚𝑛→∞  𝑓𝑧𝑛  =  𝑙𝑖𝑚𝑛→∞  𝑔𝑧𝑛 = 𝑢. 

Further,  f- reciprocal continuity of f and g implies that 𝑓𝑔𝑦𝑛  →  𝑓𝑢 and 𝑔𝑔𝑦𝑛  →  𝑔𝑢. 

Since 𝑙𝑖𝑚𝑛→∞  𝑑 𝑓𝑔𝑦𝑛 , 𝑔𝑓𝑦𝑛 = 0  , we have 𝑔𝑓𝑦𝑛 = 𝑔𝑔𝑧𝑛  →  𝑓𝑢 . Similarly,  𝑓𝑔𝑧𝑛  →  𝑓𝑢  and 𝑔𝑔𝑧𝑛  → 𝑔𝑢 . 

Hence 𝑓𝑢 = 𝑔𝑢. Now we prove that 𝑓𝑢 = 𝑢. Consider  

𝑑(𝑓𝑢, 𝑓𝑧𝑛)  <  𝑚𝑎𝑥  𝑘𝑑 𝑔𝑢, 𝑔𝑧𝑛 ,
𝑘

2
 𝑑 𝑓𝑢, 𝑔𝑢 +  𝑑 𝑓𝑧𝑛 , 𝑔𝑧𝑛  ,

𝑘

2
  𝑑 𝑓𝑢, 𝑔𝑧𝑛 + 𝑑 𝑓𝑧𝑛 , 𝑔𝑢     

     on letting 𝑛 →   ∞ we get  1 − 𝑘 𝑑 𝑓𝑢, 𝑢 ≤ 0,   which gives 𝑢 = 𝑓𝑢 = 𝑔𝑢 since 𝑘 < 1. 

Therefore u is a common fixed point of f and g. To prove the uniqueness, let u and v be two common fixed points of 

f and g. Then 𝑢 = 𝑓𝑢 = 𝑔𝑢 and 𝑣 = 𝑓𝑣 = 𝑔𝑣.   

     Now we prove that 𝑢 = 𝑣. Suppose that 𝑢 ≠ 𝑣, then 

𝑑 𝑢, 𝑣 = 𝑑(𝑓𝑢, 𝑓𝑣)  <  𝑚𝑎𝑥  𝑘𝑑 𝑔𝑢, 𝑔𝑣 ,
𝑘

2
 𝑑 𝑓𝑢, 𝑔𝑢 +  𝑑 𝑓𝑣, 𝑔𝑣  ,

𝑘

2
  𝑑 𝑓𝑢, 𝑔𝑣 + 𝑑 𝑓𝑣, 𝑔𝑢     

on letting 𝑛 →   ∞ we get 𝑑 𝑢, 𝑣 < 𝑘𝑑 𝑢, 𝑣 < 𝑑(𝑢, 𝑣),   a contradiction. Therefore  𝑢 = 𝑣 . 

Hence u is the unique common fixed point of f and g. 

 

Now we present an example to illustrate Theorem 2.7. 

 

Example 2.8: Let 𝑋 =  [1, 10] and d be the usual metric on X. Define 𝑓, 𝑔: 𝑋 →  𝑋 by  

𝑓𝑥 = 4 −
𝑥

3
   if  𝑥 ≤ 3,  𝑓𝑥 = 2   if 𝑥 > 3 

𝑔𝑥 =
4𝑥+3

5
   if  𝑥 ≤ 3,  𝑔𝑥 = 𝑥 −

3

𝑥
   if 𝑥 > 3 
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Then f and g satisfy all the conditions of Theorem 2.7 and have a unique common fixed point at 𝑥 =  3. Further, f 

and g satisfy the contraction condition (ii) for 𝑘 =  
1

2
. The mappings f and g are f-reciprocally continuous. To see 

this, let {𝑥𝑛} be a sequence in X such that 𝑓𝑥𝑛  →  𝑡 and  𝑔𝑥𝑛  →  𝑡 for some t. Then 𝑡 =  3 and either 𝑥𝑛  =  3 for 

each n or 𝑥𝑛  =  3 − 
1

𝑛
 . If 𝑥𝑛 = 3 for each n, then 𝑓𝑥𝑛 = 3, 𝑔𝑥𝑛 = 3, 𝑓𝑔𝑥𝑛   =  𝑓3 =  3 and 𝑔𝑔𝑥𝑛  =  𝑔3 =  3.  

If 𝑥𝑛  =  3 − 
1

𝑛
 then 𝑓𝑥𝑛  →  3, 𝑔𝑥𝑛   →  3, 𝑓𝑔𝑥𝑛  =  𝑓  3 −  

4

5𝑛
   →  3 = 𝑓3, 𝑔𝑔𝑥𝑛  =  𝑔  3 −  

4

5𝑛
   →  3 =

𝑔3 and  𝑔𝑓𝑥𝑛  =  𝑔  3 + 
1

3𝑛
   →  2 ≠ 𝑔3.  Thus 𝑙𝑖𝑚𝑛→∞ 𝑓𝑔𝑥𝑛  =  𝑓3 and  𝑙𝑖𝑚𝑛→∞ 𝑔𝑔𝑥𝑛  =  𝑔3  but 

𝑙𝑖𝑚𝑛→∞  𝑑 𝑓𝑔𝑥𝑛 , 𝑔𝑓𝑥𝑛 ≠ 0.  . 

Hence f and g are f-reciprocally continuous and non compatible mappings.  Also f and g are pseudo compatible. To see 

this, consider the sequence  𝑥𝑛  =  3 −
1

𝑛
  . Then 𝑓𝑥𝑛 → 3 and 𝑔𝑥𝑛 → 3. Consider another sequence  {𝑦𝑛 } = 3   ∀ 𝑛. 

Then 𝑓𝑦𝑛 → 3,  𝑔𝑦𝑛 → 3 and 𝑙𝑖𝑚𝑛→∞  𝑑 𝑓𝑔𝑦𝑛 , 𝑔𝑓𝑦𝑛 = 0  . 

If {𝑧𝑛 } is an associated sequence of {𝑦𝑛 } such that 𝑓𝑦𝑛 = 𝑔𝑧𝑛    ∀𝑛 and 𝑙𝑖𝑚𝑛→∞ 𝑓𝑧𝑛  =  𝑙𝑖𝑚𝑛→∞ 𝑔𝑧𝑛 , then 𝑧𝑛 = 3   ∀𝑛   

and 𝑙𝑖𝑚𝑛→∞ 𝑑 𝑓𝑔𝑧𝑛 , 𝑔𝑓𝑧𝑛 = 0.  Therefore f and g are pseudo compatible. 

 

Remark 2.9: The results established in this paper ensure the existence of common fixed points without assuming 

the continuity condition. Thus we provide more answers to the open problem posed by Rhoades[1]. 

 

Acknowledgement: The second author is thankful to University Grants Commission, Government of India, for 
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