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JOINT AND CONDITIONAL R-NORM INFORMATION
MEASURE

*Dr Meenakshi Darolia

The present paper depicts the joint and conditional probability distribution of two
random variables & and M having probability distributors P and Q over the Sets
X ={x,, x,, ..,x,} and Y ={y,, y,, ..., v, jrespectively. Then the R-norm information

of the random variables is denoted by H,(¢)=H,(P) and H,(7)=H,(Q), where

p,=P(E=x)i=12,...,n, p, =P(77 =yj),j=1,2,...,m

are the probabilities of the possible values of the random variables. Similarly, we
consider a two-dimensional discrete random variable (§,m) with joint probability

distribution 7r:(7z”,7z12,..7z ),

“%1n

where 7z, =P (fle.)n: yj), i=1,2...,n,j=1,2...,m is the joint probability for the

values (x, y j)of (£,7). We shall denote conditional probabilities by p;; and q; such

that T, =p;q;,=4; P And D, :Zﬁlj and g, :'zlﬂ-ij )
J=

j=1
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DEFINITION: The joint R-norm information measure for Re R* and is given by
Ho(m)=—" 1—{" > m/*}k (1.1)
i 1

Proposition 1: H,(&,7) is symmetric in § and .

Proof: The joint R-norm information measure is defined by

H, ()= {z Sa }

This implies that H,(&,7) is symmetric iné&,7 .
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Proposition 2: If  and M are stochastically independent. Then the following
holds

Hy (&)= H, (€« Hy o)== (O, ) (1.2)

Proof: Since the joint R-norm information measure for Re R* and is given by

=

HR(&U): R

s greva | 0

Since & and M are stochastically independent, thus (1.3) becomes

i=1 j=1

H (&)= %{1—[2’1: P& =1, )}R{i PR = y,)T]

- Rlil } Rlilﬁl_ nglHR(‘f)}(l_RT_lH’*(n)ﬂ

——H,.(&)H,(p) Thus finally
Hoen)= 1, &)+ 1 )2 (), ) (14)
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In the limiting case R—1 we find the additive form of Shannon’s information

measure for independent random variables.i.e. when R—1 in (1.4), then we get

Hy(Em) = Ho@)+ Holn) = HyEH, (). = H,(En)=H,(£)+ H, ()

To construct a conditional R-norm information measure we can use a direct and an

indirect method. The indirect method leads to next definition

DEFINITION: The average subtractive conditional R-norm information of n

given & for Re R*and is defined as

JHR(U/f) :HR(g’ﬂ)_HR(g)

:HR(H/§)+HR(§)

Thus H.(En)=H,(n/E)+H (&)
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A direct way to construct a conditional R-norm information is the following.
DEFINITION: The average conditional R-norm information of 1 given

& is for Re R* defined as

H, (/&)= . 11 Z p{ZqJ,R} (1.7)

i=1

Or alternatively

Hy(n/ &)= {z P, "z’q,, } (1.8)

The two conditional measure given in (1.7) and (1.8) differ by the way the

probabilities p, are incorporated. The expression (1.7) is a true mathematical

expression over§, whereas the expression (1.8) is not.

Theorem: If & and m are statistically independent random variables then for

RER"

(1) °H,n/&= Rl {i } {ZP, } {Z q; }
(2) aHR(U/f):HR(é:an)_HR(é:):HR(”)_—HR(QZ)HR(”)
(3) *HR(U/f)ZHR(U)
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(4) **HR(U/§)=HR(77)

Proof: (I) Since the average subtractive conditional R-norm information of

given & is for Re R* defined as
1 1

TH(118) =% {ipiR}R —{ n Z%R}R (1.9)

i=1 i=l j=1
Substitute 7, = p,q, in (1.9), we get

n m

Hm1) =t {zp} —{22<pi,q,->’?} (1.10)

i=l j=1

Since & and M are stochastically independent. Thus (1.10) becomes

1

SH o n1E) :% {ZP} _{ipi,e}x{iqjk}le

i=1 i=1 j=1

(Il) Since we know that if & and m are stochastically independent. Then the

following holds
Ho(Em)= Hol@)+ )=~ H, (), ()
= Hy (&)= Hol@)= H, )~ =2 HL (O, () (1.11)
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And we know

§HR(77/§)=HR(§’77)_HR(§) (112)

Using (1.12) in (1.11), we get
aHR(ﬂ/f) = HR(f’ﬂ)—HR(f): HR(U)_—

(IIT) Since the average conditional R-norm information of N given & for Re R*

and 1s defined as

1

Honl )= 1Y p{zq } (1.13)

Substituteq, =¢, in (1.13), we get

1

H, (/&)= =1 Z p{Zq, }

Hence "H,(n/&)=H, ) (1.14)

(IV) Since the average conditional R-norm information of 1 given § for Re R*
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and 1s defined as

1

Hy(n/&)= {Z p; Zq,, } (1.15)

Substitute ¢, =¢, in (1.15), we get

1
. R n m R R
HR(U/f):R 1 1_{ Pi2_ 4; }
- i 1

Hence “H,(n/&)=H,n)

From this theorem we may conclude that the measure’ H, (/&) , which is obtained

by the formal difference between the joint and the marginal information measure,
does not satisfy requirement (I). Therefore it is less attractive than the two other
measure. In the next theorem we consider requirement (II), for the conditional

information measures “H,(7/&) and “H,(7/¢) .

Theorem: If  and M are discrete random variables then for Re R* then the

following results hold.

O “H.@n/&)<H@m) A)  “H,(n/&)<H, (@)
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(D) “H, (/&)< Heprg)  AV) "H (/)< H, 1/ ) <H (n)
The equality signs holds if ¢ and 7 are independent. Proof:

(I) Here we consider two cases: Cases I: when R < 1

We know by [4] that forRr >1.

1

i{zxj}le ;S Z{ixf}R (1.16)

== = |

Setting x,, =x,, >0 in (1.16), we have

{i {ZEH > {Z z; } (1.17)

j=1 i=1 i=1 j=1

Since ¢, =Yz, and 7, =pyq, (1.18)

Using (1.18) in (1.17), we get
1 1

[i } < { f(%p)} (1.19)

=l j=1

It can be written as
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soT ]
[Tl

3

We know -2 50 if R> 1

Multiplying both sides of (1.20) by %, we get

But E l—l:ipi{iqﬁR}R} _+ HR(ﬂ/f) and

‘H,(n/E)<H (p) for R>1

R{l{iqf]e] = H,(n) Thus (1.21) becomes

ISSN: 2321-1776

(1.20)

(1.21)

(1.22)
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Cases II: when 0 <R <1

We know by [4] that forO<R < 1

R
550 [ =5{50] .

Setting x,; =x,, >0 in (1.23), we have

{f {Z”H _{ { ,,R}] (1.24)

\Y
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m R % n m R %
=1-Y ¢ | <1- (,:p:) (1.25)
j=1 i=l | j=1
R .
We know <0ifO<R< 1

Multiplying both sides of (1.25) by%, we get

14

1 1
R n R R n m R
A R > |1— A R 1.26
R_l{ {qu s p{zq} (1.26)

1

But R_1 1‘{?%{?%:‘1?}1?} =H,(n/g) and

i=1

Thus (1.26) becomes

= H,(/&)<H, () forO<R< 1. (1.27)

Thus from (1.22) and (1.27), we get

"H, (/&)< H,(n) forR€R"
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(II) H ere we consider two cases
Cases I: when R >1

From Jensen’s inequality for R > 1,we find
n n R
z piq]'iR 2|:Z piqjij| :CIf (1.28)
i=1 i=1

After summation over j and raising both sides of (1.28) by power% , we have

1 1

sogo o]

! il

ool o]

1

L L
1_{2 piz qjiRi| S1_|:Z qu:| (1.29)
i=1 =

R
R-1

Using >0as R > 1, Thus (1.29) becomes

! 1

R o R |f|_ R oo R
71 1—[;19,-;%7 } SR—l 1_{2% } (1.30)
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1

R n m R -
R-1 i=1 j=1

Thus (1.30) becomes
"H,n/E)<H,(p) forR>1 (1.31)
Case II: when 0 <R <1

From Jensen’s inequality for 0 < R < 1 we find

R
z piqjiR S{Z piqu} =Qf (1.32)
i=1 i=1

After summation over j and raising both sides of (1.32) by power% , we have

1 1

PR

1 1

1

1_{2 pii qjiRi|R 21_|:i qu:|R (1.33)
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R
R-1

Using <0as 0 <R <1, Thus (1.33) becomes

1 1

R n m ® R R R
LA D A ) <—|1- . 1.34
k' {;p’z_:‘q” } “xl' {qu } (134)

1

R n m R -
R-1 i=1 j=1

1
And K 1{2"1]%’?]? = H,(p)

- Jji=1

Thus (1.34) becomes
"H,(n/&)< H,(n) for 0<R<1 (1.35)
Thus from (1.31) and (1.35), we get
"H,(n/&)<H,(p) for RER'
(IIT) Here we consider two cases:
Cases I: when R >1

We know from Jensen’s inequality

1

> p,{i qﬁR}R S{Z Py, q,»iR}R for R>1 (1.36)
i=1 j=1 i=1 j=1
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—_

=1

Using % >0 1if R >1, then (1.37) becomes

(1.37)

And %{1—{2‘,19,%%1@} ]=++ H,n/$)

Thus (1.38) becomes  “H,(7/&)<"H, (/&) for

(1.39) Case Il: when 0 <R <1 We know from Jensen’s inequality

1

1 1
{Z pl{i qﬁ’*}k}{i Yy qj,.RT for 0<R<1
= =1 =l

i=1
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B 1 1

n m E n mn
- z pi{Z]: qj[R} S_{le pizl: qjik}
j= i= j=

R

i=1

1 1

by p,{i qj,»R}R 31{2 p,ﬁ: qﬁRT (1.41)

i=1

Using %< 0 if 0 <R < 1, then (3.41) becomes

1 1

I U I S (1.42)
R-1 s i U R-1 =

=l j=l

But R ipi{iqf} =" Hy(n/$)

—_

And % 1{2"“ piiqﬁRT =" H,(n/&) Thus (1.42) becomes

i=1 j=1

“H,n/&)<H, (/&) forO<R<l (1.43)
Thus from (1.39) and (1.43), we get “H,(7/&)<"H,(n/&) for R€R'
(IV) From (I) and (IIT), we have "H,(7/£)<H,(n) And

“H,(n/E)< H, (/&) Thus finally we find
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“Hy(n1&)< H,(n1&)<H,(n) (1.44)

HENCE PROVED
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