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ABSTRACT 

A classifier for predicting protein secondary structure from amino acid sequences has been 

proposed and implemented in a previous experiment. NN-GORV-II classifier utilizes the 

power of Artificial Neural Network and GOR method of protein secondary structure 

prediction. The Critical Assessment of techniques for Structure Prediction of proteins (CASP) 

experiments aim at establishing the current state of the art in protein structure prediction. 

The NN-GORV-II classifier is tested using CASP targets proteins. This test is based on 

testing a new protein classifier with proteins targets (amino acids) that were never used by 

the classifier at any prior training or testing stages, hence it’s known as blind test. This type 

of prediction was described as true prediction. The performance of the NN-GORV-II method 

on the CASP targets: (Q3) is 76.9% with 7.5% standard deviation while the quality of the 

prediction (SOV3) of the method reached 75.4% with 9.8% standard deviation. The 

Correlation Coefficients are 0.68, 0.63, and 0.62 for helices, strands, and coils, respectively, 

indicating strong relationship between predicted and observed secondary structures states. 

 

Keywords: Bioinformatics, Protein Secondary Structure Prediction, Blind Test, Independent 

Test CASP. 
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1.0 Introduction 

Proteins are series of amino acids known as polymers linked together into contiguous chains 

[1]. Protein has three main structures: primary structure which is essentially the linear amino 

acid sequence. Secondary structure which are  helices,  sheets, and coils that are formed 

when the sequences of primary structures tend to arrange themselves into regular 

conformationsTertiary or 3D structure: where secondary structure elements are packed 

against each other in a stable configuration [2,3]  

Advances in molecular biology in the last few decades lead to the rapid sequencing of 

considerable genomes of several species. The need for computational methods rather than 

laboratory techniques alone to predict protein structure becomes inevitable. GOR method was 

first proposed by Garnier et al. [4]and named after its authors Garnier, Osguthorpe, and 

Robson. The GOR method is based on the information theory and naive statistics and it has 

been a standard method for many years [5, 6] 

Artificial Neural networks have been used successfully in the prediction of proteins 

secondary structures. Since the neural network can be trained to map specific input signals or 

patterns to a desired output, information from the central amino acid of each input value can 

be modified by a weighting factor, then grouped together and sent to a second level (hidden 

layer) where the signal is clustered into an appropriate class [7,8,9,10]. Several secondary 

structure classifiers or predictor use neural network alone or neural network combined with 

other method or methods [11, 12]. 

 

The NN-GORV-II prediction method developed in this work depends on the statistical 

assumption that combining relevant information in different prediction or classification 

methods will possibly increase the prediction accuracy of the combined method [13]. The 

NN-GORV-II method is a protein secondary structure classifier developed by combing the 

GOR method and neural networks using a filtering mechanism [14]. 

 

As described by their founder, the Critical Assessment of techniques for protein Structure 

Prediction (CASP) experiments aim at establishing the current state of the art in protein 

structure prediction, identifying what progress has been made, and highlighting where future 

effort may be most productively focused. The goal of CASP experiments is to obtain an in 

depth and objective assessment of the current abilities and inabilities in the area of protein 

structure prediction. In the competition, participants will predict as much as possible about a 

set of soon to be known structures. This type of prediction was described by CASP initiators 

as true prediction than prediction made on already known proteins[15,16,17] 
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2.0 Materials and Methods 

The development of NN-GORV-II algorithm was a long process described in details in [14]. 

The NN-GORV-II developed as an improved version of NN-GORV-I by using a filtering 

mechanism to the data base. The performance of the NN-GORV-II classifier was found of 

superior performance and quality when compared to several methods and classifiers 

studied[14]. .Since it is based on data or targets that have never been seen by the NN-GORV-

II classifier, the test on these targets is essential to assess the reliability and partiality of this 

classifier. 

CASP3 targets are used in this independent or blind test which represents protein sequences 

that have never been used in training or testing the NN-GORV-II classifier. The importance 

of these CASP3 proteins is that they are classified by the CASP organizers as proteins with 

no homologous sequences of known structure.  

In this experiment, 42 CASP3 target proteins are extracted with their secondary structure 

predicted using the PHD [18] program. It is not possible for this experiment to find predicted 

or observed CASP4 or CASP5 targets which are more recent and hence CASP3 was used to 

give an idea about the independent test set performance. 

Several assessment measures and methods are used in this work to estimate the prediction 

accuracy of the NN-GORV-II algorithm developed and studied in this work.. The methods 

implemented to assess the accuracy of performance and quality of the prediction using CASP 

targets. 

The Q3 accuracy per residue which measures the expected accuracy of an unknown residue is 

computed as the number of residues correctly predicted divided by the total number of 

residues. The QH ratio is defined as the total number of  helix correctly predicted divided by 

the total number of  helix. The same definitions are applied to QE (  strands) and QC (coils). 

The Q3 factor is expressed as: 
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Segment overlap measure (SOV) calculation [19, 20] is calculated for the CASP targets. 

Segment overlap values attempt to capture segment prediction, and vary from an ignorance 

level of 37% (random protein pairs) to an average of 90% level for homologous protein pairs. 

The SOV aims to assess the quality of a prediction rather than performance. Segment overlap 

is calculated by:  
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Where: N is the total number of residues,mnov is the actual overlap, and mxov is the extent 

of the segment. 

lens1 is the number of residues in segment s1. is the accepted variation in segments.  

The Q3 and SOV measures are calculated using the SOV program downloaded from the web 

site: http://PredictionCenter.llnl.gov[21]. 

Matthews’ correlation coefficient (MCC) is performed for each of the three states. 

Calculating the four numbers ( ip , ir , iu , and io ). The formula of Matthews’s correlation [22] 

can be rewritten as: 
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Where: 

ip number of correctly predicted residues in conformation., 

ir number of those correctly rejected. 

iu number of the incorrectly rejected (false negatives)., 

io number incorrectly predicted to be in the class (false positive), 

i  = is one of the confirmation states H, E, or C. 

 

3.0 Results and Discussion 

The results of the blind test on the 42 CASP targets are discussed in details in this section. 

Figure 1 and Table 1 show the distribution of the 42 CASP proteins predicted using the NN-

GORV-II algorithm for all the threesecondary structure states. For the helices states, the 

histogram of Figure 1 shows that about 18 proteins (targets) are predicated at QH of above 

95% and more than 5 proteins predicted at 85%, 75%, and 65% each.  

 



IJITE      Vol.2 Issue-10, (October 2014)            ISSN: 2321-1776 
Impact Factor- 3.570 

 

International Journal in IT and Engineering 
                                         http://www.ijmr.net email id- irjmss@gmail.com  Page 24 
 

 

N 

U 

M 

B 

E 

R 

 

O 

F 

 

P 

R 

O 

T 

I 

E 

N 

S 

 
Q 

 
SOV 

 

Figure 1: The distribution of prediction actuariesQ3 and SOV of the 42 CASP targets  

Less than three proteins are predicted at 55% and about two proteins predicted at 45%, 35%, 

and 5%. The strands prediction accuracies (QE)are 8 proteins predicted at 95%, 6 proteins 

predicted at 85% and 5% each, and 7 proteins are predicted at 75%, and 65%. The rest of the 

proteins are predicted at 55% QE level and below. As for coils, Figure 1 shows that the about 

15 proteins are predicted at level of 70-80% QC, about 13 proteins at level of 60-70%, and 

about 10 proteins at level of 80-90%. The rest three proteins are predicted at level 90-100%. 

The SOV distributions show similar results to what is seen in Figure 1. 

 

Figure 2 shows the results of the blind test in a line graph. The figure elucidates that the 

helices (QH) and strands (QE) lines travelled from the zero prediction while coils (QC) and the 

overall performance (Q3) travelled from below 60% and above 60%, respectively.The 

histogram of Figure 1 and the line graph of Figure 2 show that the strands states are predicted 

by the NN-GORV-II in a more scattered distribution followed by the helices states while the 

overall prediction (ALL) was more homogenous and continuous followed by the coils states 

prediction. The results elucidated that the majority of protein are predicted at Q3 accuracies 

between 70-80%. 
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Figure 2: The performance of the 42 CASP targets with respect to Q3 prediction measures 

 

Table 1 shows all the values of Qand SOV. The overall prediction accuracies (Q3 or ALL) for 

the 42 CASP targets are shown in Table 1. About 8 proteins are predicted at Q3 accuracy 

between 60% and below 70%, about 20 proteins predicted at accuracy of 70-80%, about 12 

proteins are predicted at Q3 of 80-90%, and about two proteins predicted at accuracies above 

90% and below 100%. It is clear that there is no protein predicted at accuracy below 60% of 

Q3. These results are supported by the line graph of Figure 2 where each line indicates a 

secondary structure state travelling towards the 100% accuracy through the 42 CASP targets.  

Table 1: Percentages of prediction accuracies and SOV measures for the 42 CASP3 proteins 

targets 

ID Protein Name Q3 QH QE QC SOV3 SOVH SOVE SOVC 

T0085 Cytochrome C554, Nitrosomonaseuropaea 72 65.8 22.2 83.3 72.9 82.7 27.8 73.5 

T0084 RLZ, artificial construct 91.9 100 100 62.5 69.5 68 100 75 

T0083 Cyanase, E.coli 83.3 77.5 100 90 81.9 75.2 86.8 93.8 

T0082 
Ribonuclease MC1, Momordicacharantia (Bitter 

Gourd) 
77.4 81.2 75 76.4 67.4 62.3 76.4 68.1 

T0081 Methylglyoxal synthase, E. coli 71.7 73.4 64 73 73.5 95.3 72 56.8 

T0080 3-methyladenine DNA glycosylase, human 72.6 65.6 75 73.3 65 94.1 67.5 59.8 

T0079 MarA protein, E. coli 79.8 92 0 66.7 85.3 100 0 68.8 

T0078 Thioesterase, E. coli 67.7 82.8 76.4 58.2 64 84.1 68 56.2 
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T0077 
Ribosomal protein L30, Saccharomyces 

cerevisiae 
76.2 94.3 74.2 61.5 86 98.2 83.9 76.7 

T0076 cdc4p, Schizosaccharomycespombe 95.7 96.5 100 94.5 94.7 100 100 87.5 

T0075 Ets-1 protein (fragment), mouse 82.7 80 0 87.8 85 79.4 0 95.1 

T0074 The second EH domain of EPS15, human 88.8 97.7 100 81.5 85.3 98.5 100 77.6 

T0072 CD5 domain 1, human 78.2 63.6 60.5 91.8 79.9 90.9 71.8 82.9 

T0071 Alpha adaptin ear domain, rat 75.2 59.4 88.9 75.5 82 67.4 84.3 89.1 

T0070 Omp32 protein, Comamonasacidovorans 73.8 0 86.3 65.4 64.1 0 84 53.8 

T0069 Recombinant conglutinin, bovine 78.8 91.3 77.1 72 73 100 82.9 58 

T0068 
Polygalacturonase, Erwinia carotovora subsp. 

carotovora 
78.5 100 83.5 73.7 74.4 39.6 81 70.7 

T0067 
Phosphatidylethanolamine Binding Protein, 

Homo sapiens 
75.9 100 68.4 77.5 80.6 82.6 76.1 82.4 

T0065 B SinIprotein, Bacillus subtilis 87.7 96.3 0 85.7 85.2 100 0 77.1 

T0064 A SinRprotein, Bacillus subtilis 77.5 92.7 0 79.5 82.6 100 0 83.4 

T0063 
Translation initiation factor 5A, 

Pyrobaculumaerophilum 
75.4 88.9 90.3 59.7 72.5 100 84.6 59.2 

T0062 Flavin reductase, E. coli 83.2 80.6 93.8 78.1 90.3 86.2 97.1 89 

T0061 Protein HDEA, E. coli 66.3 78.3 16.7 59.5 59.7 60.8 8.3 66.2 

T0060 D-dopachrometautomerase, human 80.3 93.5 81.6 70.8 90.9 100 92.8 83.6 

T0059 Sm D3 protein (The N-terminal 75 residues) 82.7 100 85.4 79.4 76.2 100 70.2 85.3 

T0058 Uracil-DNA glycosylase, E.coli 79.9 95.7 59.6 78.8 78.3 99.1 70.2 70.7 

T0057 
Glyceraldehyde 3-phosphate dehydrogenase, S. 

solfataricus 
67.1 64 67 69.6 72.2 66 70.6 79.4 

T0056 DnaB helicase N-terminal domain, E.coli 86.8 98.6 0 73.2 79.5 98.4 0 61 

T0055 lectin, Polyandrocarpamisakiensis 67.2 70.6 65.9 67.2 59.8 82.4 75.4 50.7 

T0054 VanX, Enterococcus faecium 75.7 76.3 48 82.2 70.4 79.6 56 67.3 

T0053 CbiK protein, S. typhimurium 72.7 80.5 65.6 61.4 71.1 84.7 67.7 53.2 

T0052 Cyanovirin-N, Nostocellipsosporum 64.4 50 53.8 77.6 69.4 71.4 68.3 68.9 

T0051 
Glutamate mutase component E - Clostridium 

cochlearium 
74.7 84.1 53.8 70.7 72.8 91.8 64 58.1 

T0050 
Glutamate mutase component S - Clostridium 

cochlearium 
69.3 95.6 47.6 64 75.8 90.2 63.1 73.6 

T0049 EstB, Pseudomonas marginata 71.7 79.2 46.2 73.9 51.1 91 38.4 43.4 

T0048 
Pterin-4-alpha-carbinolamine dehydratase, 

62.7 54.8 80 73.3 70.6 65.4 73.3 81.7 
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Pseudomonas aeruginosa 

T0047 Alpha(2u)-Globulin 87.7 100 98.5 75.3 86.6 100 100 74.5 

T0046 Gamma-Adaptin Ear Domain 79 33.3 92 75 82.7 44.4 94.9 78.8 

T0045 HI1434 77.2 61.8 78.6 98.1 82.9 80.3 81 87.5 

T0044 RNA-3'terminal phosphate cyclase 72 94.9 66.1 64.9 76.7 86.4 68.2 78.4 

T0043 
7,8-dihydro-6-hydroxymethylpterin-

pyrophosphokinase (HPPK) 
66.5 62 81 66.7 55 69.1 73.6 41.4 

T0042 NK-lysin from pig, 78a.a. 80.8 94.1 0 83.3 71.6 73 0 100 

 

Table 1 shows the performance of the NN-GORV-II method predicting the three secondary 

structures states: helices (QH), strands (QE), and coils (QC); and the overall accuracies (Q3) of 

the 42 CASP targets. The observed secondary structure predictions of the 42 targets are 

referenced to the PHD predications of these target sequences as mentioned in the 

methodology. This independent test portrays a real view about the NN-GORV II algorithm 

predictions of data that has not been used in its training or testing procedures. 

Table 1 also shows the SOV measures of the NN-GORV-II method predicting the three 

secondary structures states: helices (SOVH), strands (SOVE), and coils (SOVC); and the 

overall accuracies (SOV3) of the 42 CASP targets. It is important to note that the SOV 

measures had been estimated using the same data used in estimating the performance 

accuracy (Q), and the same program as discussed in the methodology. Since the predicted 

secondary structures of the 42 targets of the PHD program are used here as observed 

structures, care should be taken when comparing the performances (Q3) and qualities (SOV3) 

of NN-GORV-II method with other prediction methods or classifiers(Table 1). An Ideal blind 

test should refer to sequence or targets that are predicted in molecular biology laboratories. 

However, the PHD program is a stringent and well established classifier that can be taken as 

reference. 

 

Table 2 shows the mean performance (Q), the SOV measure, and the Mathew’s Correlation 

Coefficients (MCC) of the NN-GORV-II method on the 42 CASP target sequences with the 

corresponding standard deviations. The values in the table confirmed what has been 

discussed previously in the above figures and tables. Since they exhibit higher standard 

deviations, the strand states predictions have a higher variability and less homogeneity 

followed by the helices states. On the other hand the coils states exhibit less standard 

deviation and hence predicted in a continuous and homogenous pattern or distribution as seen 

in Figure 1. 
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Table 2: The mean of Q3 and SOV with the standard deviations, and Mathew’s Correlation 

Coefficients (MCC) of CASP targets 

 

Measure ALL H E C 

Q 76.87  7.52 79.69 20.75 62.45 31.10 74.58 09.80 

SOV 75.44 9.75 81.87 20.62 63.81 31.03 72.33 12.83 

MCC - 0.68 0.63 0.62 

 

As shown in Table 2 which summarizes tables 8.1 and 8.2, the performance of the NN-

GORV-II method on the 42 CASP targets (Q3) is 76.87% with a small standard deviation of 

7.52% while the quality and usefulness (SOV3) of the method reached 75.44% with 

relatively small standard deviation of 9.75%. The Mathew’s Correlation Coefficients (MCC) 

is 0.68, 0.63, and 0.62 for helices, strands, and coils, respectively, indicating strong 

relationship between predicted and observed secondary structures states [23, 24] 

The results of this work reflect a practical test of the NN-GORV-II method performance and 

quality on an independent test set. The values and the results confirmed what has been 

discussed in a previous work that the NN-GORV-II method is a classifier with high accuracy 

and quality of prediction [14, 25]  

 

4.0 Conclusion 

This work assesses the performance and quality of the prediction of the NN-GORV-II 

classifier by using an independent test set of protein data that has not been used in training 

and testing the algorithm. CASP3 protein targets had been used for this purpose. The result of 

the test gives an empiricalresult of the prediction performance and quality of the NN-GORV-

II method despite the limitation of the data set. The blind test proved that it’s practical and 

reliable.The observed secondary structures states of these target sequences are determined by 

the PHD method and not laboratory methods; so a straightforward comparison with other 

methods might not be an accurate comparison. The NN-GORV-II method performance 

accuracy in predicting protein secondary structure and the quality of prediction are far better 

than many results reported by many researchers. 
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