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ABSTRACT:  

The paper focuses on path geometry of a coupler point in an eight-link mechanism having three fixed pivots and four 

ternary links. Kinematic analysis is performed by solving three vector-loop equations. Displacement equations are six 

coupled non-linear algebraic equations containing six unknown variables and can be solved by a numerical technique. 

Method of kinematic coefficient is used for obtaining the geometry of coupler curve i.e. radius of curvature and centre of 

curvature. The formulation of expressions is made possible by inversion of mechanism. First and second order kinematic 

coefficients are obtained by differentiating the position equation with respect to an independent variable. This paper shows 

a suitable technique to decouple the 6x6 matrix into three 2x2 matrices in order to derive relations for first and second 

order kinematic coefficients. The method shown in this paper can be used to find the geometry of all coupler points of the 

mechanism 

Keywords:  Vector-loop equations; Inversion of mechanism; Kinematic coefficients; Radius of curvature; Centre of 

curvature. 

 

1.  INTRODUCTION 

Since the four-bar mechanism is the simplest 

mechanism; most of the researches are directed 

towards analysis and synthesis of this mechanism. An 

exhaustive study of kinematics in planar four-bar 

mechanism has been made by J.A. Hrones and G.L. 

Nelson [1]. Arthur and Sendor [2] presented graphical 

method for linkages. Freudenstein [3] developed 

analytical approach for synthesis of planar 

mechanisms. For mechanisms with more than four 

links, G.R. Pennok and Ali Israr [4] performed 

kinematic analysis and synthesis of six-link mechanism 

in which output link was an overturning clutch. In case 

of input-crank mechanisms [5], crank rotates at uniform speed and for its complete rotation, motion of the output 

link is determined. Study of kinematics begins with the displacement analysis, which is done by formation of 

vector-loop equations. Number of vector-loop equations depends upon the number of respective links in the 
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mechanism. The vector-loop approach for solving the output position of four-bar linkage was described in detail by 

Halls [6]. Two vector-loops were suggested by Pennok [4] for the analysis of six-link mechanism. For position a 

closed form solution was presented by A.K. Dhingra and D. Kohli [7]. Soni [8] examined coupler curves and their 

possible applications for the synthesis of six-link mechanisms. A geometric approach to determine the centers of 

curvature in network mechanisms, based on the idea of linkage reduction, was presented by Dijksman [9]. As most 

of the literature is found to be having the research work involving four- and six-link mechanisms, it is felt that an 

eight link mechanism should also be analyzed to observe the shape of one of the coupler points. Keeping the same 

in mind this paper has been presented based on the study of a coupler curve. 

 

2.  DESCRIPTION OF AN EIGHT-LINK MECHANISM 

An eight-link input crank mechanism has been shown in Fig. 1. It consists of four ternary links 1, 4, 5 and 6 and 

four binary links 2, 3, 7 and 8. The mechanism is shown to have the link 1 as fixed link, pivoted points being at P2, 

P5 and P6. Four vector-loops with respective notation are shown in Fig. 2, out of which three loops can be used for 

displacement analysis. The X and Y components of each vector-loop provides two algebraic equations resulting in 

six algebraic equations in all. These algebraic equations can be solved by a numerical method such as Newton 

Raphson method. The kinematic analysis further deals with the investigation of coupler curve. An analytical 

method is presented, in which method of kinematic coefficient is used to find the geometry of curve. The first order 

kinematic coefficients of various links are obtained by differentiating the displacement equation with respect to an 

independent variable. The second derivative of displacement equation with respect to independent variable provides 

second order kinematic coefficients. 

 

Fig. 2 – The vector-loops for eight link mechanism 

 

The values of kinematic coefficients are constant at a particular position of input link. A relative motion between 

various links can be determined by comparing these coefficients [4]. The six algebraic equations can be decoupled 

into three two-coupled equations to simplify the solution. It is made possible by inversion of mechanism. The 

technique can be adopted for the analysis of radius of curvature and center of curvature for all the coupler points. 

 

3. DISPLACEMENT ANALYSIS 
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An eight-link mechanism is shown in Fig. 1, in which P2, P5 and P6 are three ground pivots. Four ternary links are 

represented by 1, 4, 5 and 6. Link 2 is the input link, which is assumed to be rotating with constant angular velocity. 

Figure 2 shows the following vector-loops-\ 

 One four bar loop EDIF 

 Three five bar loops ABCDE, ABCIF and EFGJH 

Three vector-loops ABCDE, EDIF and EFGJH are considered for displacement analysis these three vector-loops 

contain all the variables. The above mentioned loops provide three vector-loops equations, which can be expressed 

as 

 2 3 45 5 15 0L L L L L      (1) 

        
116 4 5 0L L L L      (2)  

and 
7 57 11 68 8

0L L L L L      (3) 

 

The X and Y components of (1), (2) and (3) yields  

2 2 3 3 45 45 5 5 15 15 0Cos l Cos l Cos l Cos l Cosl           (4a) 

2 2 3 3 45 45 5 5 15 15 0l Sin l Sin l Sin l Sin l Sin          (4b) 

11 116 6 4 4 5 5 0l Cos l Cos l Cos l Cos         (4c)  

11 116 6 4 4 5 5 0l Sin l Sin l Sin l Sin         (4d) 

11 117 7 57 57 68 68 8 8 0l Cos l Cos l Cos l Cos l Cos        
 

(4e) 

11 117 7 57 57 68 68 8 8 0l Sin l Sin l Sin l Sin l Sin          (4f) 

2
  is the angle of input crank. 

3 4 5 6 7
, , , ,     and

8
  are six unknown variables which are to be determined. The 

constraints between the two vectors attached to the ternary links are  

45 4    (5a) 

57 5     (5b) 

68 6     (5c) 

Where α is the angle between sides CD and CI, β is the angle between sides DE and EH and γ is the angle between 

sides IF and FG. The solution of the Eqs, (4) can be obtained by any method, such as Newton-Raphson method.   

Differentiating (4) with respect to input variable 
2

  yields  

22 3 3 3 45 45 4 5 5 5 0l Sin l Sin C l Sin C l Sin C           (6a) 

45 452 2 3 3 3 4 5 5 5 0l Cos l Cos C l Cos C l Cos C          (6b) 

6 6 6 4 4 4 5 5 5 0l Sin C l Sin C l Sin C        (6c) 

6 6 6 4 4 4 5 5 5 0l Cos C l Cos C l Cos C         (6d) 

68 687 7 7 57 57 5 6 8 8 8 0l Sin l Sin l Sin l SinC C C C            (6e) 

68 687 7 7 57 57 5 6 8 8 8 0l Cos l Cos l Cos l CosC C C C           (6f) 

where 
'

n
C  is the first order kinematic coefficient. 

 

2

n
nC

d

d




          {n = 3, 4, 5, 6, 7 and 8} (7) 
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Differentiating (6) with respect to independent variable 2  yields 

2 2 2

46 46 46 55 5 5 5 52 2 3 3 3 3 3 3 4 46 4 0l Cos l Cos C l Sin C l Cos C l Sin C l Cos C l Sin C                    (8a) 
2 2 2

46 46 46 46 5 5 5 5 5 52 2 3 3 3 3 3 3 4 4 0l Sin l Sin C l Cos C l Sin C l Cos C l Sin C l Cos C                   (8b) 

5

2 2 2

4 4 5 5 5 5 56 6 6 6 6 6 4 4 4 4 0l Cos C l Sin C l Cos C l Sin C l Cos C l Sin C                 (8c) 

2 2 2

5 5 5 5 56 6 6 6 6 6 4 4 4 4 4 4 5 0l Sin C l Cos C l Sin C l Cos C l Sin C l Cos C                 (8d) 
2 2 2 2

7 57 57 57 57 68 68 68 687 7 7 7 5 56 6 6 8 8 6 8 8 6 0l Cos C l Sin C l Cos C l Sin C l Cos C l Sin C l Cos C l Sin C                      
 

(8e)

2 2

6

2 2

7 57 57 57 57 68 68 68 68 67 7 7 7 5 56 8 8 6 8 8 6 0l Sin l Cos l Sin l Cos l Sin l Cos l Sin l CosC C C C C C C C                        (8f) 

 

 Where nC  is the second order kinematic coefficient of the linkage 

 

2

2

2

n
n

d
C

d





     {n = 3, 4, 5, 6, 7 and 8} (9) 

 Though (6) can be solved to find out first order kinematic coefficients, these will not provide any 

relationship between various links. Equations (6a) and (6b) carry four terms with three kinematic coefficients so 

formulations of expressions for kinematic coefficients are not possible. (6c) and (6d) carry three terms with three 

kinematic coefficients, formulations of expression is possible only by inversion of mechanism. This paper consider 

5
  as an independent variable. 

Differentiating (4) with respect to 
5

  yields 

  
2 2 2 3 3 3 45 45 4 5 5

0l Sin D l Sin D l Sin D l Sin           (10a) 

 2 2 2 3 3 3 45 45 4 5 5
0l Cos D l Cos D l Cos D l Cos          (10b) 

 6 6 6 4 4 4 5 5
0l Sin D l Sin D l Sin       (10c) 

 6 6 6 4 4 4 5 5
0l Cos D l Cos D l Cos        (10d) 

 7 7 7 57 57 68 68 6 8 8 8
0l Sin D l Sin l Sin D l Sin D           (10e) 

and 7 7 7 57 57 68 68 6 8 8 8
0l Cos D l Cos l Cos D l Cos D          (10f) 

where    

5

n
n

d

d
D




         {n = 3, 4, 5, 6, 7 and 8} (11) 

  

The matrix form of (10) yields 

 

 

6 6 4 4 5 56

6 6 4 4 5 54

l Sin l Sin l SinD

l Cos l Cos l CosD

  

  




 

    
    

      (12a)

 

 

45 45 4 5 5

45 45 4 5 5

2 2 3 3 2

2 2 3 3 3

l Sin l Sin D

l Cos l Cos D

l Sin D l Sin

l Cos D l Cos

 

 

 

 

 




 

 

    
    

       (12b)

 

and
 

57 57 68 68 6

57 57 68 68 6

7 7 8 8 7

7 7 8 8 8

l Sin l Sin

l Cos l Cos

D

D

l Sin l Sin D

l Cos l Cos D

 

 

 

 












 

    
    

       (12c) 

First order kinematic coefficient of (10) can be obtained by Cramer’s rule and is written as 
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 

 
5 5 6

4

4 6 4

l Sin
D

l Sin

 

 


 

  (13a)

 

 

 

 
5 5 4

6

6 6 4

l Sin

l Sin
D

 

 








 (13b) 

 

   

 
45 45 3 4 5 5 3

2

2 3 2

l Sin D l Sin

l Sin
D

   

 

  






 (13c) 

 

   

 
45 2 45 4 5 2 5

3

2 3 2

l Sin D l Sin

l Sin
D

   

 

  






 (13d) 

 

   

 
57 8 57 68 68 8 6

7

7 7 8

l Sin l Sin

l Sin

D
D

   

 

  







  (13e) 

and
 

   

 
57 7 57 68 68 7 6

8

8 7 8

l Sin l Sin

l Sin

D
D

   

 

  







 (13f) 

Differentiating (10) with respect to independent variable 
5

  yields  

 
2 2 2

2 3 42 2 2 2 2 3 3 3 3 3 45 45 45 45 4 5 5 0l Cos D l Sin D l Cos D l Sin D l Cos D l Sin D l Cos                  
 (14a)

 

 
2 2 2

2 3 42 2 2 2 2 3 3 3 3 3 45 45 45 45 4 5 5 0l Sin D l Cos D l Sin D l Cos D l Sin D l Cos D l Sin                  
 (14b) 

 
2 2

6 46 6 6 6 6 4 4 4 4 2 5 5 0l Cos D l Sin D l Cos D l Sin D l Cos           
 (14c)

 

 
2 2

6 46 6 6 6 6 4 4 4 4 2 5 5 0l Sin D l Cos D l Sin D l Cos D l Sin           
 (14d)

 

 
2 2 2

7 6 87 7 7 7 7 57 57 68 68 68 68 6 8 8 8 8 8 0l Cos D l Sin D l Cos l Cos D l Sin D l Cos D l Sin D                    (14e) 

and 
2 2 2

7 6 87 7 7 7 7 57 57 68 68 68 68 6 8 8 8 8 8 0l Sin D l Cos D l Sin l Sin D l Cos D l Sin D l Cos D                    (14f) 

where   

2

2

5

n
n

d

d
D




   {n = 3, 4, 5, 6, 7 and 8} (15) 

 

The matrix form of (14) yields 

  
2 2

2 2

4 4 6 6 4 6 6 6 4 4 4 5 5

4 4 6 6 6 6 6 6 4 4 4 5 5

l Sin l Sin D

l Cos l Cos D

l Cos D l Cos D l Cos

l Sin D l Sin D l Sin

 

 

  

  






   

   

    
    

       (16a)

 

2 2 2
2 2 3 3 2 2 2 2 3 3 3 45 45 4 45 45 4 5 5

2 2 2
2 2 3 3 3 2 2 2 3 3 3 45 45 4 45 45 4 5 5

l Sin l Sin D l Cos D l Cos D l Cos D l Sin D l Cos

l Cos l Cos D l Sin D l Sin D l Sin D l Cos D l Sin

      

      

         


       

    
    

       (16b) 
2 2 2

7 7 8 8 7 7 7 7 57 57 68 68 6 68 68 6 8 8 8

2 2 2
7 7 8 8 8 7 57 57 68 68 6 68 68 6 8 8 87 7

l Sin l Sin D l Cos D l Cos l Cos D l Sin D l Cos D

l Cos l Cos D l Sin D l Sin l Sin D l Cos D l Sin D

      

      

        


       

    
    

       

(16c) 

 

Second order kinematic coefficient of (14) can be obtained by Cramer’s rule and is written as 

   

 

2 2

6 6 4 4 6 4 5 5 6
4

4 4 6

D l Cos D l Cos
D

Sin

l

l

   

 

    
 


 (17a) 
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   

 

2 2

4 4 6 4 6 6 5 4 5
6

6 4 6

l D l Cos D l Cos
D

Sinl

   

 

     
 


 (17b) 

       

 

2 2 2

2 2 3 2 3 3 45 45 3 4 45 45 3 4 5 5 3
2

2 3 2

l Cos D l D l Cos D l Sin D l Cos
D

l Sin

       

 

          
 


 (17c) 

       

 

2 2 2

2 2 3 2 3 3 45 2 45 4 45 2 45 4 5 2 5
3

3 3 2

l D l Cos D l Cos D l Sin D l Cos
D

l Sin

       

 

           
 


 (17d) 

       

 

2 2 2

7 7 7 57 57 8 68 68 8 6 68 68 6 8 8
7

7 7 8

8 8l Cos D l Cos l Cos D l Sin D l D
D

l Sin

       

 

           
 


 

(17e)

       

 

2 2 2

7 7 57 57 7 68 68 7 6 68 7 68 6 8 7 8 8
8

8 7 8

l D l Cos l Cos D l Sin D l Cos D
D

l Sin

       

 

           
 


 (17f) 

 

4. PATH GEOMETRY OF COUPLER POINT 

As mentioned above method of kinematic coefficient is used to obtain radius of curvature and centre of curvature of 

coupler point. Vector-loop equation for of point J as shown in Fig. 3 is written as  

    

 2 3 46 64 8 0JL L L L L L       (18) 

 

 

Fig. 3 – Vector-loop for coupler point J 

 

The X and Y components of (18) can be written as 

 2 2 3 3 46 46 64 64 8 8x l Cos l Cos l Cos l Cos l CosJ           (19a) 

and 2 2 3 3 46 46 64 64 8 8y l Sin l Sin l Sin l Sin l SinJ           (19b) 

Differentiating (19a) and (19b) with respect to input angle 2  yields 

 
' ' ' '

2 2 3 3 3 46 46 4 64 64 6 8 8 8x l Sin l Sin D l Sin D l Sin D l Sin DJ            (20a) 

and ' ' ' '

2 2 3 3 3 46 46 4 64 64 6 8 8 8y l Cos l Cos D l Cos D l Cos D l Cos DJ            (20b) 

Differentiating (20a) and (20b) with respect to input angle 2  yields 
2 2 2 2
' '' ' '' ' '' ' ''

2 2 3 46 46 46 64 64 64 64 8 83 3 3 3 4 46 4 6 6 8 8 8 83x l Cos l Cos D l Cos D l Cos D l Sin D l Cos D l Sin D R Cos D l Sin DJ                     (21a) 
2 2 2 2
' '' ' '' ' '' ' ''

2 3 46 46 46 46 64 64 64 642 3 3 3 3 3 4 4 6 6 8 8 8 8 8 8y l Sin l Sin D l Cos D l Sin D l Cos D l Sin D l Cos D l Sin D l Cos DJ                     (21b) 

The first and second order kinematic coefficients for the linkage are known from kinematic analysis. The velocity 

and acceleration of point J can be written as  
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 2
ˆ ˆ( )J x yV J i J j   

 
 (22) 

and 2

2 2
ˆ ˆ ˆ ˆ( ) ( )J x y x yA J i J j J i J j         (23) 

The unit tangent and the unit normal vector to the path of point J can be expressed as 

 

 
ˆ ˆ

ˆ

xy

y

t

J i J j

u

J

x
 




 (24a) 

and 
ˆ ˆ

ˆˆ ˆ
y x

n t

xy

J i J j
u k u

J

  

  


 (24b) 

where    
2 2

xy yJ J Jx
     (25) 

The radius of curvature of path traced by point J can be expressed as 

 

2

J

J n

J

V
r

A

  (26) 

Where the normal acceleration of point J can be expressed as 

 .
n

J J nA A u  (27) 

 Substituting (23) and (24b) into (27) and performing the dot product, the normal acceleration of point J can 

be expresses as 

 
  2

n

J

xy

x y y xJ J J J

A

J

   




 (28) 

Substituting (25) and (28) into (26) the radius of curvature of point J can be expresses as 

 

2

xy

J

y yx x

J
r

J J J J




   

  (29) 

The Cartesian coordinates of the centre of curvature of the path traced by point J can be written as  

 ( )
Jxx x n xC J r u   (30a) 

and ( )yy y J n yC J r u   (30b) 

Substituting (24b) into (30), the Cartesian coordinates of centre of curvature of the path traced by point J can be 

expresses as 

 
xx

y

J

xy

C J x

J
r

J







 
 
 

 (31a) 

and 
yyy JC J

x

xy

J
r

J







 
 
 

 (31b) 

 

5.  NUMERICAL EXAMPLE 

The constant lengths (meters) of an eight-link mechanism with respective notations (Fig.1) are shown in Table 1. Distance 

between fixed pivots P2P5 = P2P6 = 1.24 m. constraint angles GFI = DEH = 1030 and FIG = EDH = 180. Input link is 

assumed to be rotating with uniform angular velocity. Angles between fixed pivots 
6 2 5

P P P
 
= 77o and 

2 5 6
P P P = 520 
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respectively. 

TABLE 1 

 

 

 

 

 

 

 

 

 

 

Solution:  Displacement analysis is performed by substituting given data in (4) and then solving by Newton Raphson method. 

Results obtained from (4) can be plotted for full rotation of the input crank. 

 

 

Fig. 4    Angular position of link 3 against input crank position 

 

 

 

Fig. 5   Angular position of link 4, 5 and 7 against input crank position 

 

 

 

Fig. 6   Angular position of link 6 and 8 against input crank position 

 

 

l2 AB 0.35 

l3 BC 1.1 

l4 DI 0.9 

l45 CD 0.9 

l5 DE 1.1 

l57 EH 0.4 

l6 IF 1.1 

l68 FG 0.4 

l7 HJ 2 

l8 GJ 2 

l46 CI 0.9 

l64 IG 1.25 
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Fig. 7   The radius of curvature of coupler point against input crank 

position 

 

 

Fig. 8    The X coordinates of curvature of coupler point against input 

crank position 

 

Fig. 9   The Y coordinates of curvature of coupler point against input 

crank position

 

Fig. 4 to Fig. 6 show angular positions of links 3, 4, 5, 6, 7 and 8 for
0 0

2
0 360  . It can be noted that 

3
  oscillates 

from 314
0
 to 350

0
 i.e., a total angular variation of 36

0
 for one complete rotation of input crank. 

4


 
varies with total 

angular variation of 13
0
 i.e. from 177

0
 to 190

0
 as shown in Fig. 5. Variation in 8  is from 78

0
 to 85

0
and in 6 is 

from 223
0
 to 251

0
, as shown in Fig. 6. In a similar way Fig. 5 shows 7 = 169

0
 to 180

0
 and 5  = 223

0
 to 251

0
 for one 

rotation of crank.  

By substituting the known values in (13) and (17), first and second order kinematic coefficients can be determined. 

Then substituting the results obtained from (4), (13) and (17) into (19) to (31) give the radius of curvature and 

centre of curvature of coupler point J.  It can be noted from Fig. 7 that as the radius of curvature varies from 60 cm 

at crank position 20
0
 to 29 cm at crank position 140

0
, a discontinuity occurs. Radius of curvature varies from 35 cm 

and reaches up to 92.7cm at crank position of 300
0
. 

 

6.  CONCLUSION 

The paper presents a vector-loop technique for kinematic analysis of an eight-link mechanism in which the rotation 

of the input crank is converted into oscillation of the other links. The configuration consists of three loops resulting 

in three vector equations or six coupled algebraic equations. Although the equations are non-linear and carry more 

number of variables, a numerical technique is applied to generate the solution. The angular displacement of 

oscillating links is plotted against one complete rotation of the crank. The analysis also involves determination of 

radius of curvature and centre of curvature of coupler curve by method of kinematic coefficients. Geometrical 

relations for kinematic coefficients are made possible by inversion of the mechanism. A novel technique to 

decouple a 6 x 6 matrix into three 2 x 2 matrices is used to derive relations for kinematic coefficients. The variation 

in geometry of coupler curve for complete rotation of input crank is also investigated. 
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