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ABSTRACT 

In the present paper, we first establish generalized q-Taylor’s formula involving Caputo fractional q-derivatives. Next, we 

define generalized q-differential transform and its inverse and establish some basic properties for this transform. Finally, 

we apply this transform to solve some linear and nonlinear fractional q-difference equations with Caputo fractional q-

derivatives.  
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1. INTRODUCTION 

Fractional calculus is a generalization of ordinary calculus to arbitrary order. Mathematical modeling of many 

physical systems leads to linear and nonlinear fractional differential equations in various fields of physics and 

engineering. Recently, various analytical and numerical methods have been employed to solve linear and non-linear 

fractional differential equations. One such method developed by Odibat et al. [15] is the generalized differential 

transform method for fractional differential equations involving Caputo fractional derivative [5]. This method is a 

generalization of differential transform method introduced by Zhou [7]. 

The q-calculus has in the last twenty years served as a bridge between mathematics and physics. The q-difference 

calculus or quantum calculus was initially developed by Jackson  [1, 3]. The fractional q-difference calculus had its 

origin in the works of Al-Salam [4] and Agarwal [6], whereas definition of Caputo type fractional q-derivative is 

given in [16]. The    q-deformation of nonlinear integrable differential equations is started by Frenkel [9]. The     q-

differential transform was introduced by Jing and Fan [8] for solving ordinary q-difference equations. 

In this paper, we present a new generalization of q-differential transform that will extend the application of the 

transform to solve fractional q-difference equations. The new transform will be named as generalized q-differential 

transform. For this, we first establish generalized q-Taylor’s formula involving Caputo fractional q-derivative, 

which for 1q   reduces to the generalized Taylor’s formula [13]. 

The remaining paper is organized as follows. In Section 2, we provide definitions which will be used in subsequent 

sections. In Section 3, we establish generalized q-Taylor’s formula involving Caputo fractional q-derivatives. In 

Section 4, we define generalized q-differential transform and its inverse and establish some basic properties for this 

transform. In Section 5, we solve some linear and nonlinear fractional q-difference equations with Caputo fractional 

q-derivatives. 

  

2. DEFINITIONS 

For  q ,  0 < |q| < 1, q-analogue of a real number   is given by [1.1] 
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The q-shifted factorial (q-analogue of the Pochhammer Symbol) is defined by 
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and for any complex number  , 
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where the principal value of q
 is taken. 

q-analogue of power function [11] 
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and 
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 (1.4) 

The q-gamma function is defined by [11] 
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Second mean value theorem for q-integral [10] 

If ( )f x  and ( )g x  are continuous functions on  ,a b  and     0g x   for    , x a b , then    , c a b   and 

ˆ (0,1)q such that 

        ˆ           ( ,1).                
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 (1.6) 

q-Mittag-Leffler function [17] 

For    ( ) > 0;   , the q-Mittag-Leffler functions are defined by 
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q-analogue of generalized Mittag-Leffler function [17] 

For   ,l   and m , the generalized q-Mittag-Leffler function is defined by 
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where 
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  (1.10) 

with   0, 0m    and  (jm+l)  
Z  (jN0 ) 

In particular 

     ,1, , 1, 1 , .q l q q lE x a l E x a          (1.11) 

The Riemann-Liouville fractional q-integral operator, is defined as [6] 
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where q-integral is defined as follows : 
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and  

     
0 0
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 (1.14) 

For  
 , , the fractional q-integration has the following semi group property [6] 

   , , , ,  .q a q a q aI I f x I f x a x      (1.15) 

For 
 , we have [14] 
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 The Caputo type fractional q-derivative, for 1<n n   is defined as [16] 

    , , ,  1< ,  .n n

q a q a qD f x I D f x n n n  
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where 
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when 0a  , we shall denote Caputo type fractional q-derivative by the symbol qD

 . 

 For 
  and a x , we have [16] 
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q-differential transform [8] 

 The q-differential transform  qF k  of the function  f x  at x a
 
is defined as follows 
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The inverse q-differential transform of  qF k  is given by: 
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   (1.21) 

Here  f x
 
is called original function and  qF k  transformed function. 

 

3. Generalized q-Taylor’s formula involving Caputo fractional q-derivatives 

Our main result of this section is generalized q-Taylor’s formula involving Caputo fractional q-derivatives given as 

Theorem 2. We also establish as Theorem 1, a generalized mean value theorem for Caputo fractional q-derivative 

and a lemma which is required to prove main result.  

Theorem1.  If    ,, q af x D f x

  are continuous functions for  , x a b  and 0 1  , then    , c a b   and 

ˆ (0,1)q such that 
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 (2.1) 

Proof. On applying Riemann-Liouville fractional q-integral operator ,q aI  given by (1.12), to function  ,q aD f x



,we get 
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 (2.2) 

Using second mean value theorem for q-integral given by (1.6), for    ,c a x
 
we get 
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Using (1.12) and (1.16) (with 0  ), it is simplified to 
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Using (1.19) for 1n  , we get (2.1). 

In case 1  , the generalized mean value theorem for Caputo fractional q-derivative (2.1) reduces to q-mean value 

theorem [10]. 

For 1q  , Theorem 1 gives the generalized mean value theorem for Caputo derivative given by Odibat et al. [13]. 

Lemma.  If        
1

, ,,
i i

q a q aD f x D f x 


   are continuous functions on [a, b], then for 0 1   we have 
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where   , , , ,. ... (  times).
i
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Proof. The left side of (3.1), using (1.15) can be written as 
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Using (1.19) (with n=1), it becomes 
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Further, using result (1.16), we get right side of (3.1). 

Theorem 2.  If    ,

k

q aD f x


 for all 0,1,..., 1,k n n N    are continuous functions on [a, b] and 0 1  , 

then    , c a b   and ˆ (0,1)q such that 
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On simplification, it becomes 
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Using definition (1.12), we get 
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 (3.8) 

Using second mean value theorem for q-integral given by (1.6), for    ,c a x we get 
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 (3.9) 

Using (1.12) and  (1.16) (with 0  ), in the integral in (3.9), we get result (3.5). 

The radius of convergence, R for the generalized q-Taylor’s series 
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is given by 

 

 

   

   

1

,

,

1
lim .

( 1) 1

n

q aq

n
n

q
q a

D f an
R

n D f a

















 


  
 (3.11) 

In case 1  , the Caputo generalized q-Taylor’s formula (3.5) reduces to q-Taylor’s formula given by Jackson [2]. 

For 1q  , Caputo generalized q-Taylor’s formula (3.5) gives the generalized Taylor’s formula involving Caputo 

derivatives given by Odibat et al. [13]. 

  

4. GENERALIZED q-DIFFERENTIAL TRANSFORM 

We define the generalized q-differential transform  ,qF k  
of function  f x  at point x a as follows: 
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where 0 1   and  , , , ,. ....
k

q a q a q a q aD D D D   

     (k times).   

The inverse generalized q-differential transform of  ,qF k  in view of (3.10), is given by: 
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 (4.2) 

For 1  , (4.1) and (4.2) yield the q-differential transform and its inverse given by (1.20) and (1.21) respectively. 

For 1q  , (4.1) and (4.2) give the generalized differential transform and its inverse defined by Odibat et al. [15]. 

Some basic properties of the generalized q-differential transform are as given below: 

Theorem3. If    , ,,q qF k U k   and  ,qV k  are generalized q-differential transforms of functions    ,f x u x  

and  v x  at point x a  respectively, then the following results hold. 

(a). If      f x u x v x  , then      , , ,q q qF k U k V k    . 

(b). If    f x cu x , c  is constant, then    , ,q qF k cU k  . 

(c). If N naxxf n

q ,)()( 
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Proof. By linearity of generalized q-differential transform, we can easily obtain results (a) and (b). 

(c). Writing 
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We get in view of (4.2)    ,qF k k n   .  

(d).  Taking    ,q af x D u x


 
in (4.1), we get 
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Theorem 4. If    , ,,q qF k U k   and  ,qV k  are generalized q-differential transforms of functions    ,f x u x  

and  v x  at the point 0x   respectively, then the following results hold. 

(a). If    f x u cx , c  is constant, then  

    , , .k

q qF k c U k

 
                                                (4.4)

 

(b). If      f x u x v x , then 
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Proof.  

(a). On taking 0a   and replacing x  by cx  in inverse generalized q-differential transform (4.2) for  u x , we get 
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 (4.6) 

which again in view of (4.2) gives the result (4.4). 

(b).  Using definition of inverse generalized q-differential transform (4.2) at 0a   for the functions 

     ,   and f x u x v x , we get 
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 (4.7) 

On using series manipulation and then equating the coefficients of 
kx 

, we arrive at (4.5). 

 

5. SOLUTIONS OF FRACTIONAL q-DIFFERENCE EQUATIONS 

In this section, we shall solve four fractional q-difference equations involving Caputo fractional q-derivative by 

applying generalized q-differential transform and its inverse given by (4.1) and (4.2) respectively. 

Problem 1. For  10,1||0  q  and
 

 , solution of nonlinear Caputo fractional  q-Riccati type problem 

  2 2( ) ( ) ( ) 1 , 0q qD y x y x y qx a a q x x        
 

(5.1) 

with initial condition  0 0y  , is given by  

  .y x ax  (5.2) 

Taking generalized q-differential transform (4.1) of (5.1) and initial condition (5.2), using Theorems 3, 4, 5 and 6, 

we get 
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   (5.3) 

and 

 , 0 0.qY    (5.4) 

Utilizing recurrence relation (5.3) and transformed initial condition (5.4), we obtain   
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 (5.5) 

and all other terms vanish. 

Using these values of  ,qY k  in equation (4.2), we obtain the exact solution (5.2).  

This may be verified by direct substitution in the equation (5.1). 

Problem 2. For  10,1||0  q  and a, , solution of Caputo fractional q-difference equation 
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    , 0,qD y x x y q x x   

  

 (5.6) 

with initial condition 

   

 0 ,y a  (5.7) 

is given by 

  

   ,2,1 , ,qy x a E x   (5.8) 

where  ,2,1 ,q E x   stands for generalized q-Mittag-Leffler function given by (1.9). 

At the point 0x  , (5.6) gives derived condition  0 0 qD y

   (5.9) 

On applying generalized q-differential transform (4.1) to equation (5.6) and using Theorems 4, 5 and 6, it 

transforms to 
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which gives following recurrence relation 
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The generalized q-differential transform of initial conditions (5.7) and (5.9) are given by 

   , ,0  and 1 0q qY a Y    (5.12) 

Utilizing recurrence relation (5.11) and transformed initial conditions (5.12), we obtain 
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 (5.13) 

and      , , ,1 3 5 ... 0q q qY Y Y      . 

Using values of  ,qY k  in equation (4.2), we obtain the exact solution (5.8). 

The above problem is a particular case of the problem considered by Abdeljawad [17], which is solved by 

successive approximation method.   

Problem 3. For  1||0  q  and cba ,,, , the solution of Caputo fractional q-difference equation

   
3

2

, , ,q aD y x y x x a    (5.14) 

with initial conditions     and Dqy a b y a c  , is given by  

       3 3
2 2,2

, , ,q qy x b E x a c x a E x aq       (5.15) 
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where    ,,  and ,q qE x a E x a      are q-Mittag-Leffler functions given by (1.7) and (1.8) respectively. 

On applying generalized q-differential transform (4.1) with 1
2   to equation (5.14), using Theorems 3(b) and 5, it 

transforms to 
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where  ,qY k  denotes the generalized q-differential transform of function  y x . 

Taking generalized q-differential transforms of given initial conditions, we get  
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Utilizing recurrence relation (5.16) and transformed initial conditions (5.17), we obtain 
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and so on. 

Using values of  1
2,q

Y k  in equation (4.2), we obtain  
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which in view of definitions (1.8) and (1.7) of q-Mittag-Leffler functions and (1.4), gives the exact solution (5.15). 

Taking 1q  , above problem reduces to the problem considered by Kilbas [12], which is solved by Laplace 

transform method.   

Problem 4. For  1||0  q  and cba ,,, , the solution of fractional q-difference equation
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Taking generalized q-differential transforms of given initial conditions, we get 
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and so on. 
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Using these values of  1
4,q

Y k  in equation (4.2), we obtain  

 
     

7 10 13
4 4 42 3

7 1711
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1 1 1
( ) ( ) ( ) ( ) ....,q q q

q q q

y x b c x a c x a c x a c x a           
  

 (5.25) 

which in view of (1.8) and (1.4) gives the exact solution (5.21). 

Taking 1q  , above problem reduces to the problem considered by Kilbas [12], which is solved by Laplace 

transform method.  
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