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ABSTRACT

In the present paper, we first establish generalized q-Taylor’s formula involving Caputo fractional gq-derivatives. Next, we
define generalized g-differential transform and its inverse and establish some basic properties for this transform. Finally,
we apply this transform to solve some linear and nonlinear fractional g-difference equations with Caputo fractional g-
derivatives.
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1. INTRODUCTION

Fractional calculus is a generalization of ordinary calculus to arbitrary order. Mathematical modeling of many
physical systems leads to linear and nonlinear fractional differential equations in various fields of physics and
engineering. Recently, various analytical and numerical methods have been employed to solve linear and non-linear
fractional differential equations. One such method developed by Odibat et al. [15] is the generalized differential
transform method for fractional differential equations involving Caputo fractional derivative [5]. This method is a
generalization of differential transform method introduced by Zhou [7].

The g-calculus has in the last twenty years served as a bridge between mathematics and physics. The g-difference
calculus or quantum calculus was initially developed by Jackson [1, 3]. The fractional g-difference calculus had its
origin in the works of Al-Salam [4] and Agarwal [6], whereas definition of Caputo type fractional g-derivative is
given in [16]. The g-deformation of nonlinear integrable differential equations is started by Frenkel [9]. The g¢-
differential transform was introduced by Jing and Fan [8] for solving ordinary g-difference equations.

In this paper, we present a new generalization of g-differential transform that will extend the application of the
transform to solve fractional g-difference equations. The new transform will be named as generalized g-differential
transform. For this, we first establish generalized g-Taylor’s formula involving Caputo fractional g-derivative,
which for g — 1 reduces to the generalized Taylor’s formula [13].

The remaining paper is organized as follows. In Section 2, we provide definitions which will be used in subsequent
sections. In Section 3, we establish generalized g-Taylor’s formula involving Caputo fractional g-derivatives. In
Section 4, we define generalized g-differential transform and its inverse and establish some basic properties for this
transform. In Section 5, we solve some linear and nonlinear fractional g-difference equations with Caputo fractional
g-derivatives.

2. DEFINITIONS
For ge ¢, 0<]|qgl <1, g-analogue of a real number « is given by [1.1]

[o], =%

p— l_q .
The g-shifted factorial (g-analogue of the Pochhammer Symbol) is defined by

(1.1)
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k-1

[T(1-ag’) ifk>0
j=0

(a;9), =1 1 ifk=0
[T(2-aq") ifk >
j=

or equivalently

(a:0), = (@:0). . (keN),

(ag*a),
and for any complex number « ,
a;
(@a), = 2D €2
(a9;0),

where the principal value of q“ is taken.
g-analogue of power function [11]

(a-b); =a*(/:q)
ﬁ{ 1-( } . (ba,q)w (@s0) =

+a
-0 J

and
(a—b): :(a—b)(a—bq);“l
(1.4)
The g-gamma function is defined by [11]
a-1 l-a |
Iy (a)=(1-0). " (1-9)":R(@) >0. w5

Second mean value theorem for g-integral [10]
If f(x) and g(x) are continuous functions on [a,b] and g(x)>0 for xe[a,b], then Ic €(a,b) and

g € (0,1) such that

b

jf( t)d t=f jg vq e (4,1).

a (1.6)
g-Mittag-Leffler function [17]

For R (a)>0; fe R, the g-Mittag-Leffler functions are defined by

ak
X—a
E. (4, x-a) z/lk ak)+1) (1.7)
and
oo (x—a)Zk

_ — k
E.s(A,x—2a) g;/i —rq(ak+ﬂ)' (1.8)

-266-



On Generalized Q@-Differential Transform

g-analogue of generalized Mittag-Leffler function [17]
For «,l € Cand me R, the generalized g-Mittag-Leffler function is defined by

_kik l)oﬂ(m —1)(1+1)

Eumi (A, x—2) Zﬂ,kck 2 (x—a)zmk, (1.9)

where

k1 T jm+1)+1

c,=landc =]] o[ (Im+1)+1]
o Dyl a(jm+1+1)+1]

with R(e)>0,m>0 and a (jm+l) ¢ Z~ (jeNo)

In particular

Eopi (A x—a)=T,(al+1) E (4, x—a). (1.11)

q —a,al+l

k=12,3,.., (1.10)

The Riemann-Liouville fractional g-integral operator, is defined as [6]

le f(x)= q(a).!:(x—tq):‘_1 f(t)dt; ael”, a<x, w1

where g-integral is defined as follows :

X

[ f()dt=x(1-a)>a"f (x"),

0 n=0 (1.13)
and
[f()dt=[f(t)dt—]f(t)dgt,
a 0 0 (1.14)
For o, € R", the fractional g-integration has the following semi group property [6]
1P 1.8 ()=127F(x), a<x. (1.15)
For o € R", we have [14]
r (A+1 e
I;"a(x—a)lzﬁ(x—a)i ,a<xX,A+1>0. (1.16)
' 9 T, (A+a+1) q
The Caputo type fractional g-derivative, for N—1<a <n is defined as [16]
DL f(x)=157"D] f (x), n—1<a<n, nell. (1.17)
where
F)=f ()
D, f = : 0), 1.18
()= g5 (x#9) (118)

when a =0, we shall denote Caputo type fractional g-derivative by the symbol , Dq“ .

For ¢ € R" and a < x, we have [16]

n-1 Dkf

1,021 ()= 1 (x)- 5 2o
' K],

(x—a):, n-1<a<n, nell. (1.19)

g-differential transform [8]
The q-differential transform F, (k) of the function f (x) at x=a is defined as follows

F, (k)= @l l[Df ()] .

(1.20)
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The inverse g-differential transform of F, (k) is given by:

(=3 (k) (x-a), @2

Here f (x) is called original function and F, (k) transformed function.

3. Generalized g-Taylor’s formula involving Caputo fractional g-derivatives

Our main result of this section is generalized g-Taylor’s formula involving Caputo fractional g-derivatives given as
Theorem 2. We also establish as Theorem 1, a generalized mean value theorem for Caputo fractional g-derivative
and a lemma which is required to prove main result.

Theoreml. If f(Xx),. Dy, f (x) are continuous functions for x €[a,b] and 0 < <1, then 3C e(a,b) and

g € (0,1) such that

1 a
f(x)=f(a)+ ———.D;,f(c)(x-a vq €(4,1),

()= @)+ gy DT G x-2), -,
Proof. On applying Riemann-Liouville fractional g-integral operator I;a given by (1.12), to function, Dgfaf (X)
,we get

1 T a-1

17 D f = —t Dy f(t)d.t.
e DL (0= J ot e -
Using second mean value theorem for g-integral given by (1.6), for C e(a, X) we get
a a _ 1 a t a-1
17,0, f (x)_m Dy, f (c)‘{!:(x—tq)q d,t. 03

Using (1.12) and (1.16) (with A =0), it is simplified to

¢ na 1 « a
Iq,a * Dq,af (X) Fq (a+1) *Dq,a]c (C)(X a)q ’ (2.4)
Using (1.19) for n=1, we get (2.1).
In case a =1, the generalized mean value theorem for Caputo fractional g-derivative (2.1) reduces to g-mean value
theorem [10].
For g —>1, Theorem 1 gives the generalized mean value theorem for Caputo derivative given by Odibat et al. [13].

i+1

Lemma. If (*Dgfa)i f (x)(Dq“a) f (x) are continuous functions on [a, b], then for 0 < <1 we have

100= L2 @

i+1

1,(.Dz, ) f(x)-1824(.Dg,)

g.a*

where (*Dgfa)i = .D¢,..D%,....D%,(i times).
Proof. The left side of (3.1), using (1.15) can be written as

e (D) £ ()15 (2™ £ (0)]
=125 (D) £ (0=(17.05,)(.05) 1(%) |

Using (1.19) (with n=1), it becomes

(3.2)

(3.3)
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[ (.05 @),

Further, using result (1.16), we get right side of (3.1).

(3.4)

Theorem 2. If ( D )k f (x) forall k=0,1,...,n+Lne N are continuous functions on [a, b] and 0 < <1,

*g.a

then 3¢ €(a,b) and g & (0,1) such that
a(bi) @, (D) (o)
f(X)_g’:W(X_a)q +l"q((n+1)05+1)

where (,DZ,) =.DZ,..D%,.... D, (i times).

*g.a *gatxgatttxg,a

(x—a)"""  vge(d)). (3.5)

q

Proof. From (3.1), we have

n . i . i+l n (X_ )ia i
ia a _ 1 (i)e a _ a
;{|q,a(*Dq,a) F(x)-102 (.. f(x)}— > rq(iajl)(* «.) f(a) -
On simplification, it becomes _
f(X)—l(m'l)a( D“ )n+1 f (X): n (*Dcia)l f(a)( _a)la
v 5 T (lavn) @)

Using definition (1.12), we get

f (x)=i(}[)5(ai—ll)a)(x—a);“ b D (eta)™ (og ) (D)t

Using second mean value theorem for g-integral given by (1.6), for C e(a, X) we get

0 (x-a)" i (.Dz)" f(c) ot
f(x)=——2(,D2,) f 02 —tq)"P 7 dt.
(0= 2t g ) O (G 107 -
Using (1.12) and (1.16) (with A =0), in the integral in (3.9), we get result (3.5).
The radius of convergence, R for the generalized g-Taylor’s series
= (.Dg) f(a)
f _ q,a _ ia
(V=2 F (iary %

i=0

(3.10)
is given by
R=Ilim FQ(na+1) (*nga)n f(a)‘

N> Fq((n +l)a+1) (*D(;Z,a) f(a) ‘ (3.11)

In case a =1, the Caputo generalized g-Taylor’s formula (3.5) reduces to g-Taylor’s formula given by Jackson [2].
For g — 1, Caputo generalized g-Taylor’s formula (3.5) gives the generalized Taylor’s formula involving Caputo

derivatives given by Odibat et al. [13].

4, GENERALIZED g-DIFFERENTIAL TRANSFORM
We define the generalized g-differential transform F, (k) of function f (x) at point x =aas follows:
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1

Fq,a(k)=m[(*D§’a) f(X)} , 4.1)

X=a

where O<a <1 and( D"‘) =,D7 . D¢ DZ. (k times).

E qa kS qa* qa "k qa

The inverse generalized g-differential transform of Fq’a (k) in view of (3.10), is given by:

=3F,. (K)(x-a)'
P (4.2)

For o =1, (4.1) and (4.2) yield the g-differential transform and its inverse given by (1.20) and (1.21) respectively.
For g —>1, (4.1) and (4.2) give the generalized differential transform and its inverse defined by Odibat et al. [15].

Some basic properties of the generalized g-differential transform are as given below:
Theorem3. If F, ,(k),U,, (k) and V,, (k) are generalized g-differential transforms of functions f (x),u(x)

and V() at point X =a respectively, then the following results hold.
@. If f(x)=u(x)xv(x), then F (k)= Uqa(k)+vqa(k).
(b). If f(x)=cu(x), c is constant, then F, , (k)=cU,, (k).

©. If f(x)=(x-a);*,ne N, then F, (k):d(k n) where

5(k)— 1, whenk=0
10, otherwise

(d). If f(x)=,Dg,u(x), then Fq,a(k)zFql(_a((:d:i)l;l)uq,a(k +1).

Proof. By linearity of generalized g-differential transform, we can easily obtain results (a) and (b).
(c). Writing

:ga(k_n)(x_a):“

We get in view of (4.2) F,, (k)=6(k—n).
(d). Taking f(x)=,Dg,u(x) in(4.1), we get
1

o ()= g (02 P20
o ]

Ty (e(k+1) +1)
T o (ak+1)
Theorem 4. If F, (k),U,, (k) and V, , (k) are generalized g-differential transforms of functions f (x),u(x)

(4.3)

U, (k+1).

and V( ) at the point X =0 respectively, then the following results hold.
@@). If f(x)=u(cx), c is constant, then

(x
Fo ()6, () "
()=u(x)v(x). the

(). If f
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Foo ()= 3 U, (K=, i) s

Proof.
(@). On taking a =0 and replacing x by cx in inverse generalized g-differential transform (4.2) for u(x) , We get

u(cx) = guw (k) (ex) zguqﬂ (K)chx,

which again in view of (4.2) gives the result (4.4).
(b). Using definition of inverse generalized g-differential transform (4.2) at a=0 for the functions

f (x), u(x) and v(x), we get
R (0 = 30, (03, ()

On using series manipulation and then equating the coefficients of x*“, we arrive at (4.5).

(4.6)

s

k

I
o

4.7

5. SOLUTIONS OF FRACTIONAL g-DIFFERENCE EQUATIONS

In this section, we shall solve four fractional g-difference equations involving Caputo fractional g-derivative by
applying generalized g-differential transform and its inverse given by (4.1) and (4.2) respectively.

Problem 1. For 0<4q|<10<a <1 and « R, solution of nonlinear Caputo fractional g-Riccati type problem
DYy (x) = y(x)y(ax) +al, (a+1)—a’q“x*, x>0 (5.1)
with initial condition y(0)=0, is given by

y(x)=ax". (5.2)

Taking generalized g-differential transform (4.1) of (5.1) and initial condition (5.2), using Theorems 3, 4, 5 and 6,

we get

T, (a(k+1)+1)
I (ak+1)

and
Y,.(0)=0. (5.4)

g«

Yq’a(k+1)=Z::q“‘Yqya(i)Yq‘a(k—i)Jral“q(a+1)5(k)—a2q“5(k—2). 53

Utilizing recurrence relation (5.3) and transformed initial condition (5.4), we obtain
Y,.(1)=a,

Y,.(2)=0,
Y,.(3)=0,
(5.5)

and all other terms vanish.
Using these values of Yq’a (k) in equation (4.2), we obtain the exact solution (5.2).

This may be verified by direct substitution in the equation (5.1).
Problem 2. For 0<4q|<10<a<1and A,a€R, solution of Caputo fractional g-difference equation
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.Dry(x) :ﬁx“y(q‘“x),x >0,

(5.6)
with initial condition
y(0)=a, (5.7)
is given by
y(x)=a,E,, (4.%), (5.8)
where (E, ,, (4, ) stands for generalized g-Mittag-Leffler function given by (1.9).
At the point x =0, (5.6) gives derived condition,, D}y (0) =0 (5.9)

On applying generalized g-differential transform (4.1) to equation (5.6) and using Theorems 4, 5 and 6, it
transforms to
T, (a(k+1)+1) k -
: Y. (k+1)=A» 5(i-1)g“ “y, _(k-i
Fadrq) Yoo (k) =228 (=007, (k1)

(5.10)
which gives following recurrence relation
I (a(k+1)+1 2
q( ( ) )Yqya(k+1):lq‘“ “‘”Yq,a(k—l),kzl
I, (ak+1) (5.11)
The generalized g-differential transform of initial conditions (5.7) and (5.9) are given by
Y,.(0)=aandY, (1)=0 (5.12)
Utilizing recurrence relation (5.11) and transformed initial conditions (5.12), we obtain
I (a+1
an(2)=/1a—q( ).
’ r (Za +1)
3a+1) T' (a+1 2
Yq (4) _ 12 ( ) ( ) —2a ’
q (4a +1) r (2a +1)
Sa+1) T, (3a+1) I'y(a+1 2
1, (6)=paeB DTG Tufeet) o
T, (6o +1) T, (4a+1) T, (200 +1)
and Y, , (1)=Y,,(3)=Y,.(5)=...=0.
Using values of Yq,a (k) in equation (4.2), we obtain the exact solution (5.8).
The above problem is a particular case of the problem considered by Abdeljawad [17], which is solved by
successive approximation method.
Problem 3. For 04 q|<1 and 4,a,b,c € R, the solution of Caputo fractional g-difference equation
D:/fay(x)zly(x),x>a, (5.14)
with initial conditions y(a)=b and D,y(a)=c, is given by
y(x)=b,E, (/1x a)+c(x- a)qE/z(ﬂx aq), (5.15)
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where (E,(4,x—a) and (E, ;(4,x—a) are g-Mittag-Leffler functions given by (1.7) and (1.8) respectively.

On applying generalized g-differential transform (4.1) with « = % to equation (5.14), using Theorems 3(b) and 5, it
transforms to

T, (3(k+3)+1)
I, (%+1)

where Y, , (k) denotes the generalized g-differential transform of function y(x).
Taking generalized g-differential transforms of given initial conditions, we get

Yo (K+3)=2Y,, (k), (5.16)

Y., (0)=bY,, (1)=0Y,,(2)=c. (5.17)
Utilizing recurrence relation (5.16) and transformed initial conditions (5.17), we obtain
1 1 1
Y, (3)=——— b)Y, , (6)=———A%Db,Y., (9)=———1%D,....
o O ey e O Y O r
Yq,% (4) = O,Yqy}/2 (7) = O,Yq’% (10) =0,.....
Y., (5)=— 2 e, (8)=—— A% ,(11)=—— 2 1
=——_Jc, =—— )%, = c
O e O g e T )
and so on.
Using values of Y, () in equation (4.2), we obtain
1 3 1 1 g
y(x)=b+ Ab(x—a)? + ——— A%b(x—a)® + A(x-a)% +...
R 7 M O K AT
1 5 1 1
+e(x—a)+ Ac(x—a)’ + A%c(x—a)’ + Ae(x-a)” +...., (5.19)
1—‘q (%) ! 1—‘q (5) ’ 1—‘q (132) !

which in view of definitions (1.8) and (1.7) of g-Mittag-Leffler functions and (1.4), gives the exact solution (5.15).
Taking g — 1, above problem reduces to the problem considered by Kilbas [12], which is solved by Laplace
transform method.

Problem 4. For 0<4q|<1 and 4,a,b,c € R, the solution of fractional g-difference equation

*D:/fay(x)—/i*Dj?ay(x):O,x>a, (5.20)
with initial conditions y(a)=h and D,y(a)=c, is given by
y(x)=b+c(x—a)qE%z(i,x—aq). (5.21)

Taking generalized g-differential transform (4.1) with « = % of (5.20) and using Theorems 3(b) and 5, it transforms
to

r,(3(k+5)+1 I (2(k+2)+1

i (k+5)+ )Y}/(k+5)—ﬁ oli(k+2)+ )Y}/(k+2):0. (5.22)

Co(%+1) Co(b%+1)
Taking generalized g-differential transforms of given initial conditions, we get
Y., (0)=b)Y,, (1)=0Y,,(2)=0Y,,(3)=0Y,, (4)=c (5.23)
Utilizing recurrence relation (5.22) and transformed initial conditions (5.23), we obtain

1 1 1

Y ,(7)=——1¢,Y. ., (10)=———A%,Y. , (13)=——— A%....

N A K AR WA
Yq’%(S)zo,Yq’%(6):O,Yq'%(8)=O,Yqy%(9):0, ..... (5.24)
and so on.
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Using these values of Y, ,, (k) in equation (4.2), we obtain

y(x)=b+c(x—a)+

A’c(x—a);" + #ﬂ%(x ~a) +.y

T (72) (5.25)

Ac(x—a)/ +

Fq (1 4) Fq (%)

which in view of (1.8) and (1.4) gives the exact solution (5.21).
Taking g — 1, above problem reduces to the problem considered by Kilbas [12], which is solved by Laplace

transform method.
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