
�������������	
�������
�����������
�����������������������

����� !�"� !�#��	$�
��
�

������������	
������	
��
�
���
�����������

�������������������� ���

�

EXPLICIT DOMAIN KNOWLEDGE REPRESENTATION-

AOSD APPROACH

 Rajeev Ranjan*

ABSTRACT

This research is concerned with representing knowledge about the domain of AOSD applica-

tions independently and separately from other concerns of the software – henceforth referred

to as the implementation strategy – at the implementation level. As a result both the domain

knowledge and the implementation strategy become more reusable and maintainable because

changes made in the one part do not propagate to the other. Additionally, the average soft-

ware developer – who is typically not a domain expert – does not have to deal with the do-

main knowledge and vice versa. For expressing domain knowledge in a suitable medium we

investigate existing hybrid knowledge representation technologies that use frames and rules

for representing knowledge. For composing the domain knowledge and the implementation

strategy into a operational software application that exhibits the required behaviour, we are

inspired by the principles Aspect-Oriented Software Development.

Keywords: - Explicit, Domain Knowledge representation, Aspect-oriented software devel-

opment.

�

*Computer Science, S.R.K.G. College, Sitamarhi/ B.R.Bihar University,

Bihar, India

�������������	
�������
�����������
�����������������������

����� !�"� !�#��	$�
��
�

������������	
������	
��
�
���
�����������

�������������������� ���

�

1.Introduction:-

The complexity of software domains is steadily increasing and knowledge management of

businesses is becoming more important. The real-world domains of many software applica-

tions, such as e-commerce, the financial industry, television and radio broadcasting, hospital

management and rental business, are inherently knowledge-intensive. Current software engi-

neering practices result in software applications that contain implicit domain knowledge tan-

gled with the implementation strategy. An implementation strategy might result in a distrib-

uted or real-time application, or in an application with a visual user interface or a database, or

a combination of above. Domain knowledge consists of a conceptual model containing con-

cepts and relations between the concepts.

a. A first problem is that real-world domains are subject to change and businesses have to

cope with these changes in order to stay competitive. Therefore, it should be possible to iden-

tify and locate the software’s domain knowledge easily and adapt it accordingly while at the

same time avoiding propagation of the adaptations to the implementation strategy. Similarly,

due to rapidly evolving technologies, we should be able to update or replace the implementa-

tion strategy in a controlled and well-localized way.

b. A second problem is that the development of software where domain knowledge and im-

plementation strategy are tangled is a very complex task: the software developer, who is typi-

cally a technology expert but not a domain expert, has to concentrate on two aspects of the

software at the same time and manually compose them. In short, the tangling of domain

knowledge and implementation strategy makes understanding, maintaining, adapting, reusing

and evolving the software difficult, time-consuming, error-prone, and therefore expensive.

The cause of this problem can be found in current software development methodologies.

Older software development methodologies such as OOSE and Booch , and even the newer

standard Rational Unified Process employ a use case-driven approach as a result of which

domain knowledge and implementation strategy are modelled together from the start. Other

approaches to software development such as domain engineering try to take a whole family

of applications into account by allowing anticipated variations of (among others) domain

�������������	
�������
�����������
�����������������������

����� !�"� !�#��	$�
��
�

������������	
������	
��
�
���
�����������

�������������������� ���

�

knowledge, but do not offer an explicit and separate model of the real-world domain knowl-

edge.

2. Examples of domain Knowledge representation AOSD:-

To clarify our above description of domain knowledge, two small representative case studies

that are used in this research are briefly presented here. They are both based on existing in-

dustrial applications, but scaled down without reducing the inherent complexity related to this

research topic. The first case study is an e-commerce application for an online book and cd

shop. The second case study is an application for the management and support of planning

television programs for broadcast companies.

2.1 E-Commerce

The domain of a first application contains for example the obvious concepts customer, shop-

ping cart, product (of which Book and CD are specializations), customer profile, and some

obvious relationships between them. Constraints on this static domain model are for exam-

ple”a customer can buy at most 10 products at the same time” or”if the purchased products

are shipped, the order cannot be cancelled”. Related to calculating the price of an order there

are a number of rules such as”if a customer has previously bought 15 products, he or she is

entitled to a 10% discount on the next order”, ”if it is Holi, everybody gets a 5% discount”

and ”if a customer’s last purchase was a CD in the category of classical music, then he or she

gets a discount of 15% on the next classical music CD”. It becomes interesting when one

thinks of the possible interferences of these rules and constraints and how to deal with them.

What happens when a customer who has already purchased more than 10 products orders

something during Holi?

2.2 Broadcast Planning

In the domain of broadcasting there are concepts such as transmission (a time slot in the

schedule), program (concrete program to be broadcasted), contract (for programs that were

�������������	
�������
�����������
�����������������������

����� !�"� !�#��	$�
��
�

������������	
������	
��
�
���
�����������

�������������������� ���

�

purchased), tape, snap (a rebroadcast), trailer (announcement for a number of programs),

group of programs, chain of programs, and so on. Again, there are relationships between

these concepts, some more obvious than others. Constraints limit the scheduling of these con-

cepts, for example stating that”a snap should always be scheduled after its original” and that

”the contract should be valid for the period in which the program will be broadcasted’. When

a scheduled entity is moved in the program schedule a number of rules become active, such

as ”if the anchor of a chain of programs is moved, the entire chain has to be moved”. Again,

the rules and constraints interact: if the rules dictate that other programs have to be moved as

a result of the move of a program, all the constraints have to be checked on these programs as

well.

3. SCOPE, GOALS, AND HYPOTHESIS:-

According to the technical problem described earlier, the domain knowledge and the imple-

mentation strategy of software applications should be represented as separated as possible.

Although this principle can and should be applied throughout the entire software develop-

ment life cycle, we will concentrate on representing domain knowledge and implementation

strategy separately at the implementation level.

Object-oriented programming languages are the state of the art today for expressing the im-

plementation strategy. Given the structure of concepts and relations and the declarative nature

of the constraints and the rules, a suitable representation will be selected from existing hybrid

(i.e. frames and rules) knowledge representation languages for expressing domain knowl-

edge. Purely static representation of domain knowledge will not suffice since it has a very

active role to play in achieving the overall behaviour of the system.

Therefore, suitable reasoning mechanisms have to be selected for checking the constraints

and chaining the rules. A combination of forward and backward reasoning seems a good can-

didate for the latter. Our research hypothesis is using knowledge representation technologies

for expressing domain knowledge of a software application explicitly and separately from the

implementation strategy of the software application which is expressed in a standard (object-

oriented) programming language will improve software understand ability, software mainte-

nance and software reuse.

�������������	
�������
�����������
�����������������������

����� !�"� !�#��	$�
��
�

������������	
������	
��
�
���
�����������

�������������������� �$�

�

Finally, the AOSD community among others promotes decomposing parts of the software

into loosely coupled and independently evolvable components because it improves reusabil-

ity. Whereas the aforementioned suite of technologies achieves the desired separation or de-

composition of explicitly described domain knowledge from the implementation strategy, it

does not consider the composition of the two in order to achieve a working software applica-

tion. Since the structural part of the domain knowledge should be mapped onto the imple-

mentation strategy and the operational part should be dynamically inserted in very specific

places in the implementation strategy, we will look at Aspect-Oriented Software Develop-

ment technologies because they achieve exactly this. In these technologies, aspects such as

error handling, error reporting, and persistence and so on, are expressed in an aspect language

separate from the implementation strategy.

4. PLAN, METHOD AND CONTRIBUTION

The following sections correspond to the most important steps in this research project.

4.1 Representing Domain Knowledge

After a literature study of hybrid knowledge representation systems containing representation

mechanisms for both frames and rules, the following minimal set of features for representing

domain knowledge was decided upon:

• Basic frame-based representation

• Prototype-based frames, as in KRS

4.2 Composing Domain Knowledge and Implementation Strategy

This step in the research project consists of two parts: first, investigating the suitability of ex-

isting AOSD technologies for composing domain knowledge with the implementation strat-

egy, and second, establishing a symbiosis between the selected knowledge representation sys-

tem (KRS) and the object-oriented programming language (OOPL) for facilitating the com-

position of domain knowledge and implementation strategy.

4.2.1 AOSD technologies

�������������	
�������
�����������
�����������������������

����� !�"� !�#��	$�
��
�

������������	
������	
��
�
���
�����������

�������������������� ���

�

Currently we are investigating the state of the art in AOSD technologies such as HyperJ ,

AspectJ, Composition Filters and Demeter. The goal is to find out how well they support

composing domain knowledge and implementation strategy using the small case studies ex-

plained above. The result will be a set of necessary features that are required for composing

domain knowledge and implementation strategy. Since it is very likely that this set will con-

tain features from the different approaches – some AOSD approaches have different capabili-

ties that complement each other well – we predict that no single approach will be most suit-

able.

4.2.2 Symbiosis between a KRS and a OOPL

For enabling the composition of domain knowledge and implementation strategy, the sym-

biosis between the chosen knowledge representation system and the object-oriented pro-

gramming language will have to be investigated.

5. RELATEDWORK

Apart from the aforementioned technologies and approaches that will be actively (re)used in

this research project, some other work is also relevant. Bank Objects is a project we were in-

volved in together with an industrial partner specialized in producing and maintaining digital

Banking data to be used in Bank Information Systems. In this project we delivered a means

for describing quality constraints, used for checking the well formedness of the geographic

data, in an application independent, modular and declarative way on a conceptual model of

the Banking data. This representation of the quality constraints is translated by means of a

code generator into a classical programming language which has access to the actual Banking

data via API calls.

There is some work done on Business Rules, where rules and constraints are modelled sepa-

rately from the core application at the specification level. At the design and implementation

level patterns are provided for making the business rules as reusable and maintainable as pos-

sible. However, the business rules are still tangled in the implementation strategy and not ex-

�������������	
�������
�����������
�����������������������

����� !�"� !�#��	$�
��
�

������������	
������	
��
�
���
�����������

�������������������� ���

�

pressed declaratively. We still need to look into approaches such as Common Rules and

Business Rule Beans.

6. CONCLUSION

We are currently halfway through this research project. The exploratory phase is coming to

an end and all the ideas that we picked up on the way are beginning to crystallize into a co-

herent research topic, goal and plan.

7. REFERENCES

1. Aspect-Oriented Software Development. http://www.aosd.net/.

2. G. Booch. Object-Oriented Analysis and Design with Applications. Benja-

min/Cummings

3. IBM. Business Rule Beans. http://www.research.ibm.com/AEM/brb.html.

4. IBM. CommonRules.

http://www.research.ibm.com/rules/commonrulesoverview.html.

