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ABSTRACT:  

In this paper we turn to the spectral decomposition of the Laplacian matrix. We show how the elements of the spectral 

matrix for the Laplacian can be used to construct symmetric polynomials that are permutation invariants. The coefficients 

of these polynomials can be used as graph features which can be encoded in a vectorial manner. We extend this 

representation to graphs in which there are unary attributes on the nodes and binary attributes on the edges by using the 

spectral decomposition of a Hermitian property matrix that can be viewed as a complex analogue of the Laplacian. 

Key words: Laplacian Matrix, Spectral Matrix, Hermitian Property Matrix, Permutation matrix, symmetric polynomials 

MSC 2011: 05CXX 

 

1. INTRODUCTION 

Graph structures have proved computationally cumbersome for pattern analysis. The reason for this is that before 

graphs can be converted to pattern vectors, correspondences must be established between the nodes of structures 

which are potentially of different size. To embed the graphs in a pattern space, we explore whether the vectors of 

invariants can be embedded in a low dimensional space using a number of alternative strategies including principal 

components analysis (PCA), multidimensional scaling (MDS) and locality preserving projection (LPP). 

Experimentally, we demonstrate the embeddings result in well defined graph clusters. 

The analysis of relational patterns, or graphs, has proven to be considerably more elusive than the analysis of 

vectorial patterns. Relational patterns arise naturally in the representation of data in which there is a structural 

arrangement, and are encountered in computer vision, genomics and network analysis. One of the challenges that 

arise in these domains is that of knowledge discovery from large graph datasets. The tools that are required in this 

endeavour are robust algorithms that can be used to organise, query and navigate large sets of graphs. In particular, 

the graphs need to be embedded in a pattern space so that similar structures are close together and dissimilar ones 

are far apart.  

Moreover, if the graphs can be embedded on a manifold in a pattern space, then the modes of shape variation can be 

explored by traversing the manifold in a systematic way. The process of constructing low dimensional spaces or 

manifolds is a routine procedure with pattern-vectors. A variety of well established techniques such as principal 

components analysis 
[11]

, multidimensional scaling 
[7]

 and independent components analysis, together with more 

recently developed ones such as locally linear embedding , iso-map and the Laplacian eigenmap 
[2]

 exist for solving 

the problem.  
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In addition to providing generic data analysis tools, these methods have been extensively exploited in computer 

vision to construct shape-spaces for 2D or 3D objects, and in particular faces, represented using coordinate and 

intensity data. Collectively these methods are sometimes referred to as manifold learning theory. However, there 

are few analogous methods which can be used to construct low dimensional pattern spaces or manifolds for sets of 

graphs. 

 

2.  NOTATIONS 

PCA – Principal Component Analysis 

MDS – Multi Dimensional Scaling 

LPP – Locality Preserving Projection 

LDA – Linear Discriminant Analysis 

PU – Permutation Matrix 

L – Laplacian Matrix 

H – Hermitian Matrix 

BK – symmetric Polynomials 

U‟s – Orthogonal Matrices 

 ‟s – Diagonal Matrices 

† – dagger operator 

 

3.  SPECTRAL GRAPH REPRESENTATIONS 

Consider the undirected graph G = (V, E,W) with node-set V = {v1, v2, . . . ,vn}, edgeset 

E = {e1, e2, . . . , em}   V × V and weight function W : E   (0, 1]. The adjacency matrix A for the graph G is the n 

× n symmetric matrix with elements 



 


otherwise

vvif
A

ba

ab
,0

),(,1 
  

In other words, the matrix represents the edge structure of the graph. Clearly if the graph is undirected, the 

matrix A is symmetric. If the graph edges are weighted, the adjacency matrix is defined to be 



 


otherwise

vvifvvw
A

baba

ab
,0

),(),,( 
 

The Laplacian of the graph is given by L = D−A. where D is the diagonal node degree matrix whose elements     

Daa = 

n

b abA
1

are the number of edges which exit the individual nodes. The Laplacian is more suitable for spectral 

analysis than the adjacency matrix since it is positive semidefinite. 

In general the task of comparing two such graphs G1 and G2 involves finding a correspondence mapping between the 

nodes of the two graphs,   21: vvf . The recovery of the correspondence map f can be posed as that of 

minimising an error criterion. 
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The minimum value of the criterion can be taken as a measure of the similarity of the two graphs. The additional 

node „ ‟ represents a null match or dummy node. Extraneous or additional nodes are matched to the dummy node. 

A number of search and optimisation methods have been developed to solve this problem 
[5, 9]

. We may also 

consider the correspondence mapping problem as one of finding the permutation of nodes in the second graph 

which places them in the same order as that of the first graph.  

This permutation can be used to map the Laplacian matrix of the second graph onto that of the first. If the graphs 

are isomorphic then this permutation matrix satisfies the condition L1=PL2P
T
. When the graphs are not exactly 

isomorphic, then this condition no longer holds. However, the Frobenius distance || L1 = PL2P
T
 || between the 

matrices can be used to gauge the degree of similarity between the two graphs. Spectral techniques have been used 

to solve this problem. For instance, working with adjacency matrices the permutation matrix PU that minimises the 

Frobenius norm ||A -PAP|| = )J(P 2

T

U1UU . The method performs the singular value decompositions 

 U U= A T

1111  and  U U= A T

2222  , where the U’s are orthogonal matrices and the ‟s are diagonal matrices
 [1]

. 

Once these factorizations have been performed, the required permutation matrix is approximated by  U U T

12 . 

In some applications, especially structural chemistry, eigenvalues have also been used to compare the structural 

similarity of different graphs. However, although the eigenvalue spectrum is a permutation invariant, it represents 

only a fraction of the information residing in the eigen system of the adjacency matrix.  

Since the matrix L is positive semidefinite, it has eigenvalues which are all either positive or zero. The 

spectral matrix is found by performing the eigenvector expansion for the Laplacian matrix L, i.e. 





n

i

T

iii eeL
1

   

where λi and ei are the n eigenvectors and eigenvalues of the symmetric matrix L. The spectral matrix then has the 

scaled eigenvectors as columns and is given by 

nn eee  ..., 2211     ………….(1) 

The matrix Φ is a complete representation of the graph in the sense that we can use it to reconstruct the original 

Laplacian matrix using the relation L = ΦΦ
T
. 

The matrix Φ is a unique representation of L iff all n eigenvalues are distinct or zero. This follows directly from the 

fact that there are n distinct eigenvectors when the eigenvalues are also all distinct. When an eigenvalue is repeated, 

then there exists a subspace spanned by the eigenvectors of the degenerate eigenvalues in which all vectors are also 

eigenvectors of L. In this situation, if the repeated eigenvalue is non-zero there is continuum of spectral matrices 

representing the same graph. However, this is rare for moderately large graphs. Those graphs for which the 

eigenvalues are distinct or zero are referred to as simple. 

 

4.  NODE PERMUTATIONS AND INVARIANTS  

The topology of a graph is invariant under permutations of the node labels. However, the adjacency matrix, and 

hence the Laplacian matrix, is modified by the node order since the rows and columns are indexed by the node 

order. If we relabel the nodes, the Laplacian matrix undergoes a permutation of both rows and columns. Let the 

matrix P be the permutation matrix representing the change in node order. The permuted matrix is L
′
= PLP

T
. There 
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is a family of Laplacian matrices which are can be transformed into one another using a permutation matrix. The 

spectral matrix is also modified by permutations, but the permutation only reorders the rows of the matrix ΦTo 

show this, let L be the Laplacian matrix of a graph G and let L
′
= PLP

T
 be the Laplacian matrix obtained by 

relabelling the nodes using the permutation P. Further, let e be a normalized eigenvector of L with associated 

eigenvalue λ, and let e′ = Pe. With these ingredients, we have that  

e = PLe = PePLP eL T     

Hence, e′ is an eigenvector of L′ with associated eigenvalue λ. As a result, we can write the spectral matrixΦ′ of the 

permuted Laplacian matrix L′ =Φ′Φ′T as Φ′ = PΦ. Direct comparison of the spectral matrices for different graphs 

is hence not possible because of the unknown permutation. 

The eigenvalues of the adjacency matrix have been used as a compact spectral representation for comparing graphs 

because they are not changed by the application of a permutation matrix. The eigenvalues can be recovered from 

the spectral matrix using the identity 





n

i

ijj

1

2  

The expression



n

i

ij

1

2
is in fact a symmetric polynomial in the components of eigenvector ei. A symmetric 

polynomial is invariant under permutation of the variable indices
[3]

. In this case, the polynomial is invariant under 

permutation of the row index i.  

In fact the eigenvalue is just one example of a family of symmetric polynomials which can be defined on the 

components of the spectral matrix. However, there is a special set of these polynomials, referred to as the 

elementary symmetric polynomials (S) that form a basis set for symmetric polynomials. In other words, any 

symmetric polynomial can itself be expressed as a polynomial function of the elementary symmetric polynomials 

belonging to the set S. 

We therefore turn our attention to the set of elementary symmetric polynomials
[4]

. For a set of variables {v1, v2 . . . vn} 

they can be defined as 





n

i

in vvvvS
1

211 ),...,(  



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



n

i

inn vvvvS
1

21 ),...,(  

The power symmetric polynomial functions 





n

i

in vvvvP
1

211 ),...,(  


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n

i

in vvvvP
1

2

212 ),...,(  
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


n

i

n

inn vvvvP
1

21 ),...,(  

also form a basis set over the set of symmetric polynomials. As a consequence, any function which is invariant to 

permutation of the variable indices and that can be expanded as a Taylor series, can be expressed in terms of one of 

these sets of polynomials. The two sets of polynomials are related to one another by the Newton-Girard formula: 

                
krk

r

k

k
r

r SP
r

S 






 



1

1
1

)1(
)1(

      …………..(2) 

where we have used the shorthand Sr for Sr(v1, ....., vn) and Pr for Pr(v1, ....., vn) . As a consequence, the elementary 

symmetric polynomials can be efficiently computed using the power symmetric polynomials. 

In this paper, we intend to use the polynomials to construct invariants from the elements of the spectral matrix. The 

polynomials can provide spectral “features” which are invariant under node permutations of the nodes in a graph 

and utilise the full spectral matrix. These features are constructed as follows; each column of the spectral matrix Φ 

forms the input to the set of spectral polynomials. For example the column {Φ1,i, Φ2,i, . . . , Φn,i} produces the 

polynomials S1(Φ1,i,Φ2,i,...,Φn,i), S2(Φ1,i, Φ2,i, . . . , Φn,i), . . ., Sn(Φ1,i, Φ2,i, . . . , Φn,i). The values of each of these 

polynomials are invariant to the node order of the Laplacian. We can construct a set of n
2
 spectral features using the 

n columns of the spectral matrix in combination with the n symmetric polynomials.  

Each set of n features for each spectral mode contains all the information about that mode up to a permutation of 

components. This means that it is possible to reconstruct the original components of the mode given the values of 

the features only. This is achieved using the relationship between the roots of a polynomial in x and the elementary 

symmetric polynomials. The polynomial 

            
 

i

ivx 0)(      …………(3) 

has roots v1, v2, . . . , vn. Multiplying out Equation (3) gives 
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0S(-1)...xSxS-x n

n2-n

2

1-n

1

n       ..……….(4) 

where we have again used the shorthand Sr for Sr(v1, ....., vn). By substituting the feature values into Equation (4) and 

finding the roots, we can recover the values of the original components. The root order is undetermined, so as 

expected the values are recovered up to a permutation. 

 

5.  UNARY AND BINARY ATTRIBUTES 

Attributed graphs are an important class of representations and need to be accommodated in graph matching. We 

have suggested the use of an augmented matrix to capture additional measurement information. While it is possible 

to make use of a such an approach in conjunction with symmetric polynomials, another approach from the spectral 

theory of Hermitian matrices suggests itself.  

A Hermitian matrix H is a square matrix with complex elements that remains unchanged under the joint operation 

of transposition and complex conjugation of the elements, i.e. H
†
 = H. Hermitian matrices can be viewed as the 

complex number counterpart of the symmetric matrix for real numbers. Each off-diagonal element is a complex 

number which has two components, and can therefore represent a 2-component measurement vector on a graph 

edge. The on-diagonal elements are necessarily real quantities, so the node measurements are restricted to be scalar 

quantities. 

There are some constraints on how the measurements may be represented in order to produce a positive 

semidefinite Hermitian matrix. Let {x1, x2,. . . ,xn} be a set of measurements for the node-set V. Further, let {y1,2, y1,3, 

. . . , yn,n} be the set of measurements associated with the edges of the graph, in addition to the graph weights
[6]

. 

Each edge then has a pair of observations (Wa,b, ya,b) associated with it. There are a number of ways in which the 

complex number Ha,b could represent this information, for example with the real part as W and the imaginary part 

as y. However, we would like our complex property matrix to reflect the Laplacian. As a result the off-diagonal 

elements of H are chosen to be 

Ha,b = −Wa,beiyab     ……………….(5) 

In other words, the connection weights are encoded by the magnitude of the complex number Ha,b and the 

additional measurement by its phase. By using this encoding, the magnitude of the numbers is the same as in the 

original Laplacian matrix. Clearly this encoding is most suitable when the measurements are angles. If the 

measurements are easily bounded, they can be mapped onto an angular interval and phase wrapping can be avoided. 

If the measurements are not easily bounded then this encoding is not suitable. 

The measurements must satisfy the conditions −π ≤ ya,b < π  and ya,b = −yb,a to produce a Hermitian matrix. To ensure 

a positive definite matrix, we require Haa >  


ab abH . This condition is satisfied if 





ab

baaaa WxH ,  and xa ≥ 0  ……………….(6) 

When defined in this way the property matrix is a complex analogue of the weighted Laplacian for the graph.  

For a Hermitian matrix there is an orthogonal complete basis set of eigenvectors and eigenvalues obeying the 

eigenvalue equation He = λe. In the Hermitian case, the eigenvalues λ are real and the components of the 

eigenvectors e are complex. There is a potential ambiguity in the eigenvectors, in that any multiple of an 



 
Laplacian Matrix In Algebraic Graph Theory 

-71- 

eigenvector is also a solution, i.e. Hαe = λαe. In the real case, we choose α such that e is of unit length. In the 

complex case, α itself may be complex, and needs to determine by two constraints. We set the vector length to |ei| = 

1 and in addition we impose the condition arg  


n

i ie
1

0 , which specifies both real and imaginary parts. 

This representation can be extended further by using the four-component complex numbers known as quaternions. 

As with real and complex numbers, there is an appropriate eigen decomposition which allows the spectral matrix to 

be found. In this case, a edge weight and three additional binary measurements may be encoded on an edge. It is not 

possible to encode more than one unary measurement using this approach. However, for the experiments in this 

paper, we have concentrated on the complex representation. When the eigenvectors are constructed in this way the 

spectral matrix is found by performing the eigenvector expansion 





n

i

iii eeH
1

†  

where λi and ei are the n eigenvectors and eigenvalues of the Hermitian matrix H
[8]

. We construct the complex 

spectral matrix for the graph G using the eigenvectors as columns, i.e. 

 nn eee  ..., 2211   ……………….(7) 

We can again reconstruct the original Hermitian property matrix using the relation H = ΦΦ
†
. 

Since the components of the eigenvectors are complex numbers and therefore each symmetric polynomial is 

complex. Hence, the symmetric polynomials must be evaluated with complex arithmetic and also evaluate to 

complex numbers. Each Sr therefore has both real and imaginary components. The real and imaginary components 

of the symmetric polynomials are interleaved and stacked to form a feature-vector B for the graph. This feature-

vector is real. 

 

6.   GRAPH EMBEDDING METHODS 

We explore three different methods for embedding the graph feature vectors in a pattern space. Two of these are 

classical methods. Principal components analysis (PCA) finds the projection that accounts for the variance or 

scatter of the data. Multidimensional scaling (MDS), on the other hand, preserves the relative distances between 

objects. The remaining method is a newly reported one that offers a compromise between preserving variance and 

the relational arrangement of the data, and is referred to as locality preserving projection [10]. 

In this paper we are concerned with the set of graphs G1, G2, .., Gk, ..., GN. The k
th 

graph is denoted by Gk = (Vk, Ek) and 

the associated vector of symmetric polynomials is denoted by Bk. 

6.1 Principal component analysis  

We commence by constructing the matrix X = [B1− B |B2− B | . . . |Bk− B | . . . |BN − B ], with the graph feature 

vectors as columns. Here B is the mean feature vector for the dataset. Next, we compute the covariance matrix for 

the elements of the feature vectors by taking the matrix product C = XX
T
. We extract the principal components 

directions by performing the eigendecomposition 



N

i

iii uulC
1

T
 on the covariance matrix C, where the li are the 

eigenvalues and the ui are the eigenvectors. We use the first s leading eigenvectors to represent the graphs extracted 
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from the images. The coordinate system of the eigenspace is spanned by the s orthogonal vectors U = (u1, u2, .., us). 

The individual graphs represented by the long vectors Bk, k= 1, 2, . . . , N can be projected onto this eigenspace 

using the formula yk = U
T
(Bk − B ).. Hence each graph Gk is represented by an s-component vector yk in the 

eigenspace. 

Linear discriminant analysis (LDA) is an extension of PCA to the multiclass problem. We commence by 

constructing separate data matrices X1,X2, . . .XNc for each of the Nc classes. These may be used to compute the 

corresponding class covariance matrices
T

iii XXC  . The average class covariance matrix 
i

N

i
c

c

C
N

C  


1

1~
is 

found. This matrix is used as a sphering transform. We commence by computing the eigendecomposition 

T
N

i

iii UUuulC 
1

T~
 

where U is the matrix with the eigenvectors of C
~

 as columns and Λ= diag(l1, l2, .., ln) is the diagonal eigenvalue 

matrix. The sphered representation of the data is X′ = Λ
−1/2

 U
T
X. Standard PCA is then applied to the resulting data 

matrix X′. The purpose of this technique is to find a linear projection which describes the class differences rather 

than the overall variance of the data. 

6.2 Multidimensional scaling 

Multidimensional scaling (MDS) is a procedure which allows data specified in terms of a matrix of pairwise 

distances to be embedded in a Euclidean space. Here we intend to use the method to embed the graphs extracted 

from different viewpoints in a lowdimensional space. To commence we require pairwise distances between graphs. 

We do this by computing the norms between the spectral pattern vectors for the graphs. For the graphs indexed i1 

and i2, the distance is 
21 i,id = (Bi1 − Bi2)

T
 (Bi1 − Bi2 ). The pairwise distances di1,i2 are used as the elements of an 

N×N dissimilarity matrix R, whose elements are defined as follows 










21

21,ii

,
i i if0

i i ifd
21

21 iiR     ………….(8)  

In this paper, we use the classical multidimensional scaling method [7] to embed the graphs in a Euclidean space 

using the matrix of pairwise dissimilarities R. The first step of MDS is to calculate a matrix T whose element with 

row r and column c is given by 
2

..

2

.

2

.

2 ˆˆˆ
2

1
ddddT crrcrc   where  


N

c rcr d
N

d
1.

1ˆ is the average dissimilarity 

value over the r
th 

row, cd .
ˆ  is the dissimilarity average value over the c

th
 column and   


N

r

N

c crd
N

d
1 1 ,2..

1ˆ is the 

average dissimilarity value over all rows and columns of the dissimilarity matrix R. 

6.3 Locality preserving projection 

The LPP is a linear dimensionality reduction method which attempts to project high dimensional data to a low 

dimensional manifold, while preserving the neighbourhood structure of the data set. The method is relatively 

insensitive to outliers and noise. This is an important feature in our graph clustering task since the outliers are 

usually introduced by imperfect segmentation processes. The linearity of the method makes it computationally 

efficient.  
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The graph feature vectors are used as the columns of a data–matrix X = (|B1|B2|...|BN|). 

The relational structure of the data is represented by a proximity weight matrix W with elements Wi1,i2 = exp[−kdi1,i2 ], 

where k is a constant. If Q is the diagonal degree matrix with the row weights  

 


N

j jkkk WQ
1 ,.

as elements, then the relational structure of the data is represented using the Laplacian matrix J = 

Q−W. The idea behind LPP is to analyse the structure of the weighted covariance matrix XWX
T
. The optimal 

projection of the data is found by solving the generalised eigenvector problem  

XJX
T
u = lXQX

T
u.     …………..(9) 

We project the data onto the space spanned by the eigenvectors corresponding to the s smallest eigenvalues. Let U 

= (u1, u2, ..., us) be the matrix with the corresponding eigenvectors as columns, then projection of the kth feature 

vector is yk = U
T
Bk. 

 

7. SHOCK GRAPHS 

7.1 Tree Attributes 

Before processing, the shapes are firstly normalised in area and aligned along the axis of largest moment. After 

performing these transforms, the distances and angles associated with the different shapes can be directly 

compared, and can therefore be used as attributes. 

To abstract the shape skeleton using a tree, we place a node at each junction point in the skeleton. The edges of the 

tree represent the existence of a connecting skeletal branch between pairs of junctions. The nodes of the tree are 

characterised using the radius r(a) of the smallest bitangent circle from the junction to the boundary. Hence, for the 

node a, xa = r(a). The edges are characterised by two measurements. For the edge (a, b) the first of these, ya,b is the 

angle between the nodes a and b, i.e. ya,b = θ(a, b). Since most skeleton branches are relatively straight, this is an 

approximation to the angle of the corresponding skeletal branch.  

Furthermore, since – π ≤ θ(a, b) < π and θ(a, b) = − θ(b, a), the measurement is already suitable for use in the 

Hermitian property matrix. 

In order to compute edge weights, we note that the importance of a skeletal branch may be determined by the rate 

of change of boundary length l with skeleton length s, which we denote by dl/ds. This quantity is related to the rate 

of change of the bitangent circle radius along the skeleton, i.e. dr/ds, by the formula 

2

1 









ds

dr

ds

dl
 

The edge weight Wa,b is given by the average value of dl/ds along the relevant skeletal branch. 
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Figure A: Examples from the shape database with their associated skeletons. 

 

We extract the skeleton from each binary shape and attribute the resulting tree in the manner outlined in Figure A 

shows some examples of the types of shape present in the database along with their skeletons. We commence by 

showing some results for the three shapes shown in Figure A. The objects studied are a hand, some puppies and 

some cars. The dog and car shapes consist of a number of different objects and different views of each object. The 

hand category contains different hand configurations. We apply the three embedding strategies outline to the 

vectors of permutation invariants extracted from the Hermitian variant of the Laplacian.  

7.2 Experiments with shock trees 

Our experiments are performed using a database of 42 binary shapes. Each binary shape is extracted from a 2D 

view of a 3D object. There are 3 classes in the database, and for each object there are a number of views acquired 

from different viewing directions and a number of different examples of the class. 

 

 

Figure – B: MDS (left), PCA (middle) and LPP (right) applied to the shock graphs. 

We commence in the left hand panel of Figure – B by showing the result of applying the MDS procedure to the 

three shape categories. The hand shapes form a compact cluster in the MDS space. There are other local clusters 

consisting of three or four members of the remaining two classes. This reflects the fact that while the hand shapes 
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have very similar shock graphs, the remaining two categories have rather variable shock graphs because of the 

different objects.   

The middle panel of Figure – B shows the result of using PCA. Here the distributions of shapes are much less 

compact. While a distinct cluster of hand shapes still occurs, they are generally more dispersed over the feature 

space. There are some distinct clusters of the car shape, but the distributions overlap more in the PCA projection 

when compared to the MDS space.  

The right-hand panel of Figure – B shows the result of the LPP procedure on the dataset. The results are similar 

to the PCA method. One of the motivations for the work presented here was the potential ambiguities that are 

encountered when using the spectral features of trees. To demonstrate the effect of using attributed trees rather than 

simply weighting the edges, we have compared the LDA projections using both types of data.  

 

Figure – C   : A comparison of attributed trees with weighted trees. 

 

Left   : trees with edge weights based on boundary lengths.  

Right : Attributed trees with additional edge angle information. 

In Figure – C the right-hand plot shows the result obtained using the symmetric polynomials from the eigenvectors 

of the Laplacian matrix L=D−W, associated with the edge weight matrix. The left-hand plot shows the result of 

using the Hermitian property matrix. The Hermitian property matrix for the attributed trees produces a better class 

separation than the Laplacian matrix for the weighted trees.  

The separation can be measured by the Fisher discriminant between the classes, which is the squared distance 

between class centres divided by the variance along the line joining the centres.  

Table – I 

 Separations 

Classes Hermitian property matrix Weighted matrix 

Car/dog 1.12 0.77 

Car/hand 0.97 1.02 

Dog/hand 0.92 0.88 
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8.  CONCLUSIONS 

We have shown how graphs can be converted into pattern vectors by utilizing the spectral decomposition of the 

Laplacian matrix and basis sets of symmetric polynomials. These feature vectors are complete, unique and 

continuous. However, and most important of all, they are permutation invariants. We investigate how to embed the 

vectors in a pattern space, suitable for clustering the graphs. Here we explore a number of alternatives including 

PCA, MDS and LPP. In an experimental study we show that the feature vectors derived from the symmetric 

polynomials of the Laplacian spectral decomposition yield good clusters when MDS or LPP are used. There are 

clearly a number of ways in which the work presented in this paper can be developed. For instance, since the 

representation based on the symmetric polynomials is complete, they may form the means by which a generative 

model of variations in graph structure can be developed. This model could be learned in the space spanned by the 

permutation invariants, and the mean graph and its modes of variation reconstructed by inverting the system of 

equations associated with the symmetric polynomials. 
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