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1.1. INTRODUCTION 

Divergence measures have played a vital role to test reliability of the information, statement or the system. To 

minimize or maximize the same depends upon the goal or strategy of the experimenter, Recently Ruchi  and Singh 

[3] has applied different divergence measures for profit maximization in share market. The same study has been 

extended to decision making process in case of world universities ranking problems. To correlate the different 

parameters for ranking problem, divergence measures have been tested. 

Recently, Taneja [4] has made a lot of contribution to the studies of different types of divergence measures, 

specially symmetric and non-symmetric. Classical and some new divergence measures have been used for 

relationship among them in terms of inequalities. 

Authors in one communication, have classified the classical divergence measures into logarithmic and non-

logarithmic, symmetric and non-symmetric divergence measures. Convexity property has been features, exploring 

calculus and Csiszar's [1] f-divergence. Now in this paper, we consider bounds among logarithmic-non-symmetric 

weighted divergence measures in the next section. 

 

SECTION 2 

(a) Let us have different logarithmic-non-symmetric weighted divergence measures: 
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(b) The second type of logarithmic weighted symmetric divergence are: 
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SECTION 3  

CSISZAR'S F-DIVERGENCE AND TANEJA'S [ 2 ] EXTENSION 

 Let f : (0, )  R be a convexed function, the f-divergence measure due to Csiszar[1] is given by 
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where P, Q, n, and 
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 Csiszar's Theorem: Let the function f : (0, )  R be differentiable convex and normalized, i.e. f(1) = 0, 

then the f-divergence (3.1)Cf (P || Q) is non-negative and convex in the pair of probability distribution (P, Q) 

nr. 

Dragomir [2] extended (3.1) as: 

 Dragomir's Theorem: If f : R+Rbe a differentiable convex and normalized function i.e. f(1) = 0. Then 
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             P, Q n. 

 Taneja's Theorem: Taneja [ 4 ] extended Csiszar's f-divergence as follows: 

Let f1, f2: I  R R be two differentiable convex and normalized functions i.e. 1 2(1) (1) 0f f   and  

(i) 1 2 and f f  are twice differentiable in (r, R) : where 0 < r  pi/qi 1  R <,  

(ii) then there exist the real constants m and M such that m < M and  
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Ruchi and Singh [ 3 ] extended Taneja's theorem for weighted distribution. 

 1 2( , ,..., )nW w w w ,  wi> 0,   i, 2, ....,n, 

corresponding to probability distribution and extended the result (3.6) as. 
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SECTION 4 

BOUNDS FOR LOGARITHMIC NON-SYMMETRIC WEIGHTED DIVERGENCE MEASURES 

(a) We have the following bounds for D(P || Q ; W) 
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Proof: Setting pi = x, qi = 1 in (2.2), we have the functional form as: 
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Also from (2.5), setting pi = x, qi = 1, we have 
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From (4.7), we have 
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Now using (3.7), together with (4.9) and  (4.10), we have 
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Proof.Setting pi = x, qi = 1 in (2.6), we have the functional form as: 
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Now using (3.7) together with (4.16) and (4.17), we get the required bounds i.e. 
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(c) We have the following bound for LNF(P || Q; W): 
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Now we define 
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From (4.26a), we observe that the function ( )FJg x is increasing in x  (0, ½) and decreasing in x  (1/2; ). 

Hence concave and non-symmetric 

Also, 
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Now using (3.7) together with (4.27), we get the required bound. 

(d) For ( || ; )FLN P Q W , we have the following bounds 
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Now using (3.7) together with (4.34) and (4.35), we get the required bounds for LNF(P||Q; W). 
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Now using (3.7) together with (4.45) and (4.46) we get the required bound. 

(f) We have the following bound LNG(P||Q; W) in terms of LSI (P || Q; W) 
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Using (3.7) together with (4.50) and (4.51), we have the required bound. 

(g) We have the following bound for LNG(P||Q; W) in terms of ( || ; )TLS P Q W  
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Now using (3.7) together with (4.58) and (4.59) we get the required bounds for LNG(P||Q; W). 
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