
International Journal in Physical and Applied Sciences 
Volume 7 Issue 08, August 2020 ISSN: 2394-5710 Impact Factor: 6.657 
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com                                                   
Double-Blind Peer Reviewed Refereed Open Access International Journal  

  

62 International Journal in Physical and Applied Sciences 
http://ijmr.net.in, Email: irjmss@gmail.com 

 

Privacy-Preserving Cloud-Based Patient Monitoring Using Long Short-Term 

Memory and Hybrid Differentially Private Stochastic Gradient Descent with 

Bayesian Optimization 

 
1Karthik Kushala 

Celer Systems Inc, Folsom, California,USA 

karthik.kushala@gmail.com 

 
2Thanjaivadivel M 
Associate Professor 

Vel Tech Rangarajan Dr. Sagunthala R&D Institute of  

Science and Technology, Tamil Nadu, Chennai, India. 

thanjaivadivelm@gmail.com 

 

Abstract 

Cloud-based patient monitoring has transformed modern healthcare by enabling real-time health tracking, remote 

diagnostics, and predictive analytics. However, privacy and security concerns related to unauthorized data access and 

adversarial attacks remain critical challenges. Existing AI-driven healthcare models face issues such as noisy and 

imbalanced data, leading to reduced accuracy and unreliable predictions. Traditional classification methods struggle with 

inefficient decision boundaries and limited adaptability, making them unsuitable for dynamic healthcare environments. 

Additionally, many existing frameworks lack privacy-preserving mechanisms, exposing patient data to adversarial attacks 

and unauthorized access, while computational inefficiencies and scalability issues hinder real-time anomaly detection and 

large-scale deployment. This research proposes a Privacy-Preserving Cloud-Based Patient Monitoring System that 

integrates Long Short-Term Memory (LSTM) networks for time-series health prediction, Hybrid Differentially Private 

Stochastic Gradient Descent (DP-SGD) for privacy-aware training, and Bayesian Optimization for efficient 

hyperparameter tuning. The framework employs Role-Based Access Control (RBAC), Homomorphic Encryption (HE), 

and AES-256 encryption to secure patient data while ensuring accessibility for authorized users. Additionally, Federated 

Learning Compatibility enhances scalability by enabling decentralized model training across multiple healthcare nodes 

without exposing raw data. Experimental results demonstrate high accuracy, reduced false positives, improved threat 

detection, and optimized model training, confirming the system’s effectiveness in secure, scalable, and real-time patient 

monitoring. This research enhances data privacy, model performance, and computational efficiency, making cloud-based 

healthcare systems more reliable, adaptable, and privacy-compliant. 

Keywords: Privacy-Preserving Cloud-Based Patient Monitoring, Long Short-Term Memory (LSTM), Time-Series 

Health Prediction, Hybrid Differentially Private Stochastic Gradient Descent (DP-SGD), Bayesian Optimization, 
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1.Introduction 

Cloud-based patient monitoring has transformed modern healthcare by enabling continuous health tracking, remote 

diagnostics, and predictive analytics [1]. However, growing reliance on cloud infrastructure and AI-powered analytics 

introduces significant privacy and security challenges, including risks of unauthorized data access, adversarial model 

attacks, and non-compliance with regulations such as HIPAA and GDPR [2,3]. To address these critical concerns, this 

research proposes a Privacy-Preserving Cloud-Based Patient Monitoring Framework that integrates Long Short-Term 

Memory (LSTM) networks for health trend forecasting, Hybrid Differentially Private Stochastic Gradient Descent (DP-

SGD) for secure training, and Bayesian Optimization for hyperparameter tuning [4,5]. 

The integration of LSTM ensures accurate temporal prediction of patient vitals, enhancing the system’s ability to detect 

anomalies early [6]. Hybrid DP-SGD introduces differential privacy noise into gradients during training, safeguarding 

patient data from inference attacks while maintaining model fidelity [7,8]. Bayesian Optimization automates the selection 
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of optimal hyperparameters, significantly reducing manual tuning and enhancing convergence efficiency [9]. 

To reinforce data protection, the framework incorporates AES-256 encryption for secure data at rest and Attribute-Based 

Encryption (ABE) for fine-grained access control [10,11]. Homomorphic Encryption (HE) further enables computations 

on encrypted data without decryption, eliminating exposure during processing [12,13]. Role-Based Access Control 

(RBAC) governs decryption rights and data access privileges, ensuring only authorized personnel can retrieve sensitive 

health data [14,15]. 

A key innovation lies in the framework’s federated learning compatibility, which enables distributed model training 

across hospital nodes without sharing raw patient data, thereby supporting both privacy and scalability [16,17]. 

Furthermore, the framework embeds real-time anomaly detection to trigger alerts for critical health events, reducing 

emergency response times [18,19]. 

The use of adversarial robustness techniques, such as noise injection and model hardening, provides resilience against 

model inversion and membership inference attacks [20,21]. The system is optimized for deployment across IoT devices, 

edge servers, and cloud environments, ensuring interoperability and energy-efficient operation [22]. 

This comprehensive approach not only addresses data confidentiality and system security but also ensures regulatory 

compliance, high accuracy, and reduced computational overhead, making it suitable for diverse healthcare scenarios 

[23,24,25]. 

2.Literature Review 

[26] designed hybrid optimization frameworks combining Particle Swarm Optimization (PSO) and Genetic Algorithm 

(GA) to optimize Recurrent Neural Networks (RNN) and Radial Basis Function (RBF) networks for disease detection in 

cloud computing environments, enhancing both diagnostic accuracy and system scalability. [27] proposed an ensemble 

machine learning approach for predicting dysphagia, delirium, and fall risk in elderly patients using logistic regression, 

random forest, and convolutional neural networks to integrate clinical and sensor data for early intervention. [28] 

introduced a deep learning model for lung cancer detection by comparing malignant and benign nodules from CT scans 

using CNNs and a hybrid feature selection strategy. [29] suggested integrating Non-Orthogonal Multiple Access 

(NOMA), Universal Value Function Approximators (UVFA), and Dynamic Graph Neural Networks (DGNNs) with AI 

systems to enhance multi-user resource sharing, dynamic function approximation, and adaptive intelligence. 

[30] further explored predictive analytics in geriatric care, emphasizing the importance of continuous monitoring and 

machine learning in managing chronic diseases and preventing adverse events. [31] integrated Ant Colony Optimization 

(ACO) with Long Short-Term Memory (LSTM) networks within cloud computing frameworks, achieving 

hyperparameter optimization and improved disease prediction accuracy under proactive healthcare interventions. [32] 

developed a cloud-based IoT architecture that enables secure, AI-powered financial transactions to foster digital financial 

inclusion and reduce socio-economic disparities. [33] proposed a federated learning framework combined with Split 

Learning, Graph Neural Networks (GNNs), and Hashgraph Technology, achieving 98% threat detection accuracy with a 

30 ms latency and 250 TPS throughput—leveraging GNNs for robust anomaly detection and Hashgraph for secure, 

scalable data exchange. 

[34] demonstrated a PSO-QDA hybrid framework wherein Quadratic Discriminant Analysis parameters are optimized 

via PSO, leading to improved model robustness and adaptability in noisy and imbalanced AI environments. [35] 

introduced a swarm-intelligence-based robotics system for real-time anomaly detection and automated task execution in 

urban healthcare, enhancing scalability, responsiveness, and decentralized processing. [36] optimized clustering in 

healthcare software testing using QRDSO and WAC-HACK hybrid models, improving clustering efficiency and feature 

granularity. [37] developed a hybrid recommendation system for e-commerce health platforms using RNNs, content-

based filtering, and collaborative filtering to personalize healthcare products. [38] emphasized the importance of 

LogBERT in anomaly detection for e-commerce cloud platforms, contributing to secure healthcare transaction 

monitoring. 

[39] explored feature selection and LPWAN integration with BIRCH clustering to address scalability in IoT-based 

blockchain frameworks, offering improved data aggregation and privacy for healthcare data. [40] leveraged machine 

learning for cybersecurity risk assessment in cloud health finance by integrating fuzzy sets and ensemble learning, 

achieving over 82% predictive success. [41] implemented a Bi-LSTM-DNN architecture for forecasting financial 

variables relevant to healthcare investments, enabling portfolio-level decision support. [42] focused on personalized AI 

recommendation engines for chronic care products, combining sensor data with NLP and semantic filtering techniques. 

[43] extended secure federated learning methods with blockchain and ZKPs for multi-hospital environments to ensure 
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decentralized compliance and patient data privacy. 

[44] modeled digital twins for diabetes care integrating GLAV (Generative Learning Adaptive Vectorization) with PPO 

and VR for enhanced patient engagement. [45] improved data compression in cloud health applications using entropy-

guided Huffman and run-length encoding hybrid techniques. [46] presented a cloud-native robotic middleware for 

surgical automation enhanced by AI-based visual tracking and command synthesis. [47] proposed quantum encryption 

schemes for secure cloud-based health monitoring using BB84 protocol in wearable health devices. [48] integrated 

blockchain-backed access control with cloud health data lakes, facilitating verifiable and immutable audit trails. [49] 

introduced a cross-layer anomaly detection mechanism for cloud healthcare using SVMs with adaptive kernel 

optimization. [50] utilized ensemble CNN models on histopathological images to predict skin cancer types, achieving 

high specificity and accuracy under privacy-preserved cloud infrastructure. 

3.Problem Statement 

Existing AI-driven healthcare models struggle with noisy, imbalanced data, inefficient decision boundaries, and limited 

scalability, affecting accuracy and real-time responsiveness. Traditional classification methods lack adaptability and 

computational efficiency, making them unsuitable for dynamic healthcare environments. A PSO-QDA hybrid model to 

optimize decision boundaries and enhance model resilience. Robotics and AI-based anomaly detection with swarm 

intelligence for fast, automated data processing. This research addresses these challenges by integrating optimized 

classification and real-time anomaly detection to improve accuracy, scalability, and responsiveness in healthcare 

applications. 

3.1 Objective 

This research aims to develop an optimized AI-driven healthcare framework that enhances classification accuracy, 

scalability, and real-time responsiveness. By integrating PSO-QDA for adaptive decision boundary optimization and 

Robotics-AI anomaly detection with swarm intelligence, the system improves computational efficiency and adaptability 

in dynamic healthcare environments. It addresses noisy, imbalanced data challenges by leveraging robust optimization 

techniques for improved model resilience. The proposed approach ensures efficient, automated, and scalable healthcare 

monitoring while maintaining high precision in real-time diagnosis. 

4.Proposed Cloud-Based Patient Monitoring Using Long Short-Term Memory and Hybrid Differentially Private 

Stochastic Gradient Descent with Bayesian Optimization 

The proposed Cloud-Based Patient Monitoring System integrates Long Short-Term Memory (LSTM) networks for 

accurate time-series health predictions while ensuring data privacy and security through Hybrid Differentially Private 

Stochastic Gradient Descent (DP-SGD). The system first collects patient health data from IoT-enabled medical 

devices, which is then encrypted and stored securely in the cloud using AES-256 and Role-Based Access Control 

(RBAC). Data preprocessing is applied to handle missing values, noise, and feature extraction before model training. 

LSTM models analyze patient vitals and detect health anomalies, while Hybrid DP-SGD ensures privacy-preserving 

training by minimizing data leakage risks. To enhance model efficiency and accuracy, Bayesian Optimization is 

employed for hyperparameter tuning. Finally, the system performs real-time anomaly detection and predictive 

analytics, providing secure, scalable, and privacy-aware healthcare monitoring for cloud-based environments. 



International Journal in Physical and Applied Sciences 
Volume 7 Issue 08, August 2020 ISSN: 2394-5710 Impact Factor: 6.657 
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com                                                   
Double-Blind Peer Reviewed Refereed Open Access International Journal  

  

65 International Journal in Physical and Applied Sciences 
http://ijmr.net.in, Email: irjmss@gmail.com 

 

 
Figure 1: Cloud-Based Patient Monitoring Using Long Short-Term Memory and Hybrid Differentially Private 

Stochastic Gradient Descent with Bayesian Optimization 

4.1 Data Collection 

The data collection phase involves gathering real-time patient health data using IoT sensors embedded in medical 

devices such as wearable monitors, ECG sensors, glucose meters, and pulse oximeters. These sensors continuously 

track vital health parameters like heart rate, blood pressure, glucose levels, and oxygen saturation. The collected raw 

data is transmitted securely to the cloud for further processing, ensuring real-time monitoring, remote diagnostics, and 

predictive healthcare insights. This step is crucial for building a reliable and data-driven patient monitoring system. 

4.2 Data Preprocessing 

The data preprocessing phase ensures data quality and consistency by handling missing values and applying 

normalization techniques. Missing values are addressed using imputation methods such as mean, median, or predictive 

modeling to prevent data inconsistencies. Normalization is applied to scale the data within a specific range, ensuring 

uniformity and improving model performance. This step enhances data reliability, reduces biases, and optimizes the 

efficiency of the LSTM model for accurate health predictions. 

4.2.1 Handle Missing Value 

Handling missing values is a crucial step in data preprocessing to ensure data integrity and prevent biased model 

predictions. Missing values in patient health records can arise due to sensor failures, transmission errors, or human 

input mistakes. Common techniques to address missing values include mean, median, mode imputation, K-Nearest 

Neighbors (KNN) imputation, and regression-based methods. 

Equation for Handle Missing Value: 

One widely used method is mean imputation, where missing values are replaced with the mean of the available data for 

that feature: 

                                                                       𝑋new =
∑  𝑛
𝑖=1  𝑋𝑖

𝑛
                                                                                  (1) 

where 𝑋new  is the imputed value, 𝑋𝑖 represents the existing values in the dataset, and 𝑛 is the number of non-missing 

values. This method helps maintain data consistency while preventing distortions in predictive modeling. 

4.2.2 Normalization 

Normalization is a data preprocessing technique used to scale numerical features within a specific range, improving 

model performance and convergence speed. In healthcare monitoring, patient data such as heart rate, glucose levels, 

and blood pressure may have different units and ranges, which can negatively impact machine learning models. Min-

Max Normalization is a widely used technique that scales data between 0 and 1 or -1 and 1, preserving the relative 
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relationships between values while ensuring uniformity. 

Equation for Normalization: 

                                                                      𝑋norm =
𝑋−𝑋min

𝑋max−𝑋min
                                                                        (2) 

where 𝑋norm  is the normalized value, 𝑋 is the original data point, and 𝑋min and 𝑋max are the minimum and maximum 

values in the dataset. This transformation ensures that all features contribute equally, enhancing model stability and 

accuracy in healthcare applications. 

4.3 Encryption  

The encryption phase secures patient data using Homomorphic Encryption (HE), allowing computations to be 

performed on encrypted data without decryption. This ensures data confidentiality while enabling secure cloud-based 

processing. HE protects sensitive health records from unauthorized access, preserving privacy and compliance with 

regulations like HIPAA and GDPR. This technique enhances data security in cloud storage while maintaining the 

ability to perform critical healthcare analytics. 

4.4 Cloud Storage 

The cloud storage phase ensures the safe and scalable storage of encrypted patient health data. Using secure cloud 

platforms, data is stored in a protected environment that supports fast retrieval, redundancy, and real-time access for 

authorized healthcare professionals. Access control mechanisms and encryption ensure that patient records remain 

confidential and comply with privacy regulations like HIPAA and GDPR. This enables efficient remote monitoring 

and predictive healthcare analytics while maintaining data integrity and security. 

4.5 Decryption 

The decryption phase utilizes Role-Based Access Control (RBAC) to ensure that only authorized users—such as 

doctors, nurses, or healthcare administrators—can access patient data based on predefined roles and permissions. This 

approach enhances data security and privacy by preventing unauthorized access while maintaining efficient and 

controlled data retrieval. RBAC ensures compliance with HIPAA and GDPR regulations, enabling secure and role-

specific access to sensitive healthcare information. 

4.6 Cloud-Based Patient Monitoring Using Long Short-Term Memory 

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) designed to handle sequential data 

by learning long-term dependencies. In healthcare monitoring, LSTM is widely used for time-series prediction, such 

as detecting cardiac abnormalities, diabetes risks, and patient health trends over time. Unlike traditional RNNs, 

LSTMs use gates (input, forget, and output gates) to regulate the flow of information, preventing the issue of vanishing 

gradients and improving long-term memory retention. 

A key equation in LSTM is the cell state update, which determines how much past information should be retained or 

forgotten: 

                                                                    𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡                                                                (3) 

where: 

𝐶𝑡 = current cell state 

𝑓𝑡 = forget gate (decides how much past information to forget) 

𝐶𝑡−1 = previous cell state 

𝑖𝑡 = input gate (controls how much new information to add) 

�̃�𝑡 = candidate cell state (new memory content) 

⊙= element-wise multiplication 

This mechanism allows LSTM to capture long-term dependencies in patient health data, making it highly effective for 

predictive healthcare analytics. 



International Journal in Physical and Applied Sciences 
Volume 7 Issue 08, August 2020 ISSN: 2394-5710 Impact Factor: 6.657 
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com                                                   
Double-Blind Peer Reviewed Refereed Open Access International Journal  

  

67 International Journal in Physical and Applied Sciences 
http://ijmr.net.in, Email: irjmss@gmail.com 

 

4.7 Hybrid Differentially Private Stochastic Gradient Descent with Bayesian Optimization 

Hybrid DP-SGD with Bayesian Optimization is an advanced optimization framework designed to enhance privacy-

preserving machine learning while improving model efficiency and accuracy. Differentially Private Stochastic 

Gradient Descent (DP-SGD) ensures privacy protection by adding controlled noise to gradients during training, 

preventing sensitive patient data from being exposed. Meanwhile, Bayesian Optimization (BO) fine-tunes 

hyperparameters such as learning rate and noise scale to optimize model performance while maintaining privacy 

guarantees. 

A key equation for DP-SGD involves the gradient update with added noise for differential privacy: 

                                                                𝜃𝑡+1 = 𝜃𝑡 − 𝜂 (
1

𝑚
∑  𝑚
𝑖=1   (∇𝐿𝑖(𝜃𝑡) +𝒩(0, 𝜎2)))                                (4) 

where: 

𝜃𝑡 = model parameters at time 𝑡 

𝜂 = learning rate 

𝑚 = batch size 

∇𝐿𝑖(𝜃𝑡) = gradient of the loss function for sample 𝑖 

𝒩(0, 𝜎2) = Gaussian noise added for differential privacy 

Bayesian Optimization (BO) refines the privacy-accuracy trade-off by selecting the optimal learning rate and noise scale 

dynamically. This hybrid approach ensures that patient data remains secure while maximizing model performance, 

making it ideal for cloud-based healthcare monitoring systems. 

Bayesian Optimization (BO) is a powerful technique used for hyperparameter tuning in machine learning models, 

especially when the objective function is expensive to evaluate. In privacy-preserving healthcare monitoring, BO is 

employed to optimize hyperparameters like learning rate, noise scale (in DP-SGD), and model architecture 

parameters while ensuring efficiency and accuracy. Unlike traditional grid or random search, BO builds a probabilistic 

model (usually a Gaussian Process) to estimate the objective function and selects the next best set of parameters using 

an acquisition function (e.g., Expected Improvement or Upper Confidence Bound). 

A key equation in Bayesian Optimization is the Gaussian Process (GP) prior, which models the unknown objective 

function: 

                                                                 𝑓(𝑥) ∼ 𝒢𝒫(𝜇(𝑥), 𝑘(𝑥, 𝑥′))                                                                  (5) 

where: 

𝑓(𝑥) is the unknown function we aim to optimize 

𝒢𝒫(𝜇(𝑥), 𝑘(𝑥, 𝑥′)) represents a Gaussian Process with mean function 𝜇(𝑥) and kernel function 𝑘(𝑥, 𝑥′) 

𝑘(𝑥, 𝑥′) defines the covariance between different parameter points, ensuring smooth predictions 

Bayesian Optimization iteratively updates this probabilistic model based on previously evaluated points, guiding the 

search towards the optimal hyperparameters while minimizing the number of function evaluations. This makes BO 

particularly useful for privacy-sensitive and resource-intensive applications like DP-SGD-based patient monitoring 

systems. 

5. Results and Discussion 

The proposed cloud-based patient monitoring system was evaluated for privacy, accuracy, and computational 

efficiency. The integration of LSTM with Hybrid DP-SGD and Bayesian Optimization improved prediction 

accuracy while preserving patient data privacy. Experimental results demonstrated high threat detection accuracy, 
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reduced false positives, and optimized training efficiency. The discussion highlights the effectiveness of privacy-

preserving techniques, scalability in cloud environments, and the system’s adaptability for real-time healthcare 

monitoring. 

Performance metrics  

In Figure 2, The graph shows high performance metrics for the Privacy-Preserving Cloud-Based Patient Monitoring 

system. Accuracy, Precision, Recall, F1-Score, NPV, and MCC all indicate strong model efficiency. The high precision 

and recall ensure reliable detection with minimal false positives. These results confirm the effectiveness of Hybrid DP-

SGD with Bayesian Optimization in maintaining privacy and accuracy. 

 

 
Figure 2: Performance Metrics 

Scalability 

 
Figure 3: Scalability Analysis 

Figure 3 illustrates the scalability analysis of the privacy-preserving patient monitoring system, showing how processing 

time increases with the number of patients. As the number of patients rises from 100 to 10,000, the processing time 

grows linearly, indicating a consistent computational overhead. This demonstrates the system's ability to handle large-

scale data efficiently while maintaining performance. 

Security 
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Figure 4: Security Analysis 

In Figure 4,The graph represents the security analysis of encryption overhead in cloud-based patient monitoring, showing 

the relationship between data size (MB) and encryption time (ms). As the data size increases from 0 to 1000 MB, the 

encryption time grows linearly, indicating a consistent encryption overhead. This analysis highlights the scalability 

and efficiency of the encryption process in securing patient data. 

6.Conclusion 

The proposed Privacy-Preserving Cloud-Based Patient Monitoring System using LSTM and Hybrid DP-SGD with 

Bayesian Optimization ensures high accuracy, security, and scalability in healthcare data processing. The integration 

of homomorphic encryption and RBAC-based decryption enhances data privacy while enabling secure cloud storage. 

Performance evaluations demonstrate efficient threat detection, reduced false positives, and optimized model 

training, making it suitable for real-time healthcare monitoring. 
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