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ABSTRACT 

The fractal nature of non-statistical fluctuations in the density distribution of singly charged 

particles produced in 
32

S–Ag/Br interactions at an incident momentum of 200 A GeV/c has been 

investigated under the frame work of Hwa’s multifractal moments, Takagi’s Multifractal 

moments and multifractal detrended fluctuation (MDFA) analysis. The experimental data have 

been collected by using the nuclear photographic emulsion technique. All results obtained 

experimental data is analyzed and have been compared with the simulated results.  

Keywords: nucleus-nucleus collision, fluctuations, long range correlation, multifractal moments. 

 

1. INTRODUCTION 

As the size of the experimental data is finite there must be present fluctuation in the distribution 

of produced particle spectrum in high energy heavy ion collision (AB collision) which is 

statistical in nature. But along with this there also exists another type of fluctuation which arises 

due to some dynamical reasons. By taking an average over a comparatively large sample the 

statistical fluctuation may be minimized by a substantial amount. At the time of averaging, the 

dynamical components are also averaged out, as a result in the final state the distribution become 

smooth. There exist many statistical techniques by the use of which one may obtain information 

about the physics of the dynamical nature of the fluctuation present in the distribution of 

produced particle spectrum. In this field it is well known that the density fluctuation has self-

similar multifractal properties which may have resulted due to some kind of scale invariant 

dynamics. Evaluating appropriate moments of the distribution and by examining how they 

depend on the phase-space interval size  one can draw information about the nature of the 

dynamical fluctuation. According to the theory [1–3] and from the experimental results [4–8], it 

is established that the self-similarity in density fluctuations should lead to a power-law scaling 

behaviour of the -dependence of multiplicity moments. Such scaling laws can further be 

utilized to extract universal fractal properties of the underlying distribution and its fluctuation. 

Efforts have been made to interpret the observed scale invariances in terms of the random 

cascading model, phase transition or more conventional phenomenon such as the Bose–Einstein 

correlation, but each with limited degree of success. Both the experimental and 

phenomenological status of the subject has been comprehensively reviewed in [9]. 

The self-similarity of scaled factorial moment (SFM) or intermittency phenomenon is observed 

in our previous investigation [10]. We observed that in pseudorapidity space the SFM of 

order q has been found to obey a scaling property like 

,                                                                                            (1) 
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For a region q=2 to q=6, where is known as intermittency index. Our previous investigation 

[10] established that the self-similarity of density fluctuations in one- dimensional particle 

distribution down to the experimental resolution involves the fractal structures. In the paper[10] 

we already presented a detail and systematic investigations under the frame work of Hwa’s 

multifractal moments and Takagi’s moments and measure the different fractal dimentions. 

Hence, in this paper I have presented some results on scaling behaviour of multifractal moments 

as functions of , and has been examined by using the different techniques [1, 11- 15]. All the 

technics has been described shortly in the methodology section. Results obtained from these 

three different formalisms of multifractal analysis have been compared to the extent possible. 
32

S–A/Br events at the same incident momentum and having identical multiplicity distribution as 

the experimental one have been simulated by using the computer code FRITIOF based on the 

Lund Monte Carlo model [16]. It is used to compare experimental in case of first two techniques. 

In order to compare the experimental results in case of third technique I prepared an identical set 

of simulated data obtained from UrQMD code [16] as experimental one and compare the 

experimental results with the simulated results. The major objectives of this paper are to 

establish the presence of multifractal characteristics of the experimental data on density 

fluctuations beyond those arising from statistical noise in terms of MFDFA moments, and 

compare all the results obtained from first two techniques how far they agree with each other as 

well as to extract relevant fractal parameters. 

 

2. EXPERIMENT AND DATA 

Nuclear photographic emulsion plates (Ilford G5) were irradiated horizontally with a beam of 
32

S 

nuclei at an incident momentum of 200 A GeV/c obtained from the super proton synchrotron 

(SPS) at CERN. After development, washing, mounting on glass plates, and drying, the emulsion 

plates were volume scanned with the help of Leitz Metalloplan microscopes at a total 

magnification of 300×. For minimize the error and biasness the scanning was done by two 

independent observers. Considering a primary interaction induced by the incoming 
32

S projectile 

the total number of track of secondary emission was counted and the emission angle ( ) and the 

azimuthal angle of each secondary track with respect to the incident projectile track the 

number of secondary tracks were measured by an oil immersion objectives at a total 

magnification of 1500×. According to emulsion terminology, the tracks coming out of an 

interaction can be classified into four categories, namely, shower, grey, black tracks and 

projectile fragments. The singly charged particles moving at relativistic speed is known 

as shower track. The particles produced in a high-energy interaction (mostly charged mesons) 

fall into this category, and the total number of such particles in an event is denoted by . The 

grey tracks are mainly due to protons knocked out from the target nucleus that directly 

participate in the interactions. A few percentages of them may also be due to slowly moving 

mesons. The slowly moving heavy target fragments that coming out of the target nucleus after 

the interaction has taken place is termed as black tracks. The projectile fragments are the 

spectator parts of the incoming projectile nucleus. Details of the event selection criteria, 

classification of tracks and other aspects of the experiment can be found elsewhere [17]. The 

number of heavy tracks in an event  is equal to the sum of the number of black and grey 
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tracks . A cut on the number of these heavy target fragments e.g.,  in each event 

ensured that a subsample of 
32

S-interactions only with Ag or Br nuclei has been considered. Here 

I consider only those interactions for which the number of spectator projectile fragments in an 

event with charge  is equal to zero, which enables us to choose only those interactions 

for which total fragmentation of the incident 
32

S nucleus has taken place. Following these 

criteria,  only 200 central and semi-central 
32

S–Ag/Br interactions was selected for further 

analysis. The average number of shower tracks for the considered sample of events was,

, and the present analysis is confined only to the shower tracks.  

The rapidity variable, defined as 

, 

is additive in nature under Lorentz transformations and is used to locate a particle in a one-

dimensional phase space. Here E and  are, respectively, the energy and longitudinal component 

of linear momentum of the particle. As energy and momentum of the emitted particles is very 

difficult to measure in case of emulsion experiment it is convenient to replace the rapidity 

variable by The pseudorapidity variable, as  

. 

Here in comparison with the total energy the rest energy of a particle was neglected, as is the 

case for most of the charged mesons produced in high-energy interactions. There are many 

limitations in Nuclear emulsion experimentsbut it is superior to other experiments in one respect 

that here we may get a very high angular resolution , and this advantage can be 

exploited, where distribution of particles in small phase-space region is to be analysed. To 

overcome the problem of shape dependence of the emitted particle distribution one can replace 

the phase-space variable (say ) with a cumulative variable  [19] defined as  

 

Here,  and are the minimum and maximum value of , and is the single-particle 

density distribution in terms of . Irrespective of the basic phase-space variable from which it is 

derived, density distribution in terms of the cumulative variable is always uniform in between 

and . Though the entire analysis on multiplicity moments will henceforth be 

preformed taking as the basic variable, we shall continue to call the corresponding space as 

-space. The pseudorapidity density distribution , for the shower tracks was 

obtained, being the total number of events in our sample. The distribution of is 

well represented by a Gaussian distribution. As mentioned earlier, the experimental results have 
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also been compared with those obtained by analysing events generated with the computer code 

FRITIOF based on Lund Monte Carlo model [21] for high-energy AB interaction in case of 

Hwa’s multifractal moments and Takagi’s multifractal moments and in case of MFDFA 

moments we used UrQMD code [16]for simulated data.  

 

3. METHODOLOGY AND RESULTS 

3.1. Hwa’s multifractal moments 

It is well known that with the help of fractal geometry it is possible to characterize the 

distribution and it is well observed in the investigation from the intermittency analysis of the 

present set of data [10]. According to the theory of multifractality the density of final state 

hadrons should follow a scaling property with the phase-space partition size, and the scaling 

properties should be different in different regions of phase space. 

Due to the finiteness of average shower track multiplicity multiparticle production 

phenomenon in high energy nucleus-nucleus collision suffers an acute problem. The statiostical 

fluctuation is very large for finite of the frequency distribution and its moments. As the bin 

size gets smaller, the problem of statistical noise arising out of the growing presence of empty 

bins also requires special attention. The multifractal moment (G-moment) of order q, also known 

as frequency moment, was introduced for an event as [11] 

           (2) 

Here M is the total number of intervals into which the entire phase space has been divided, is 

the number of particles in the j
th

 bin of i
th

 event, is the total number of particles in the i
th

 

event, , and is a step function for integer as well as fractional q as defined in [11]. 

The step function is taken care of in order to account the effect of empty bin. The theory of 

fractals demands that a self-similar behavior in dynamical component should present in the 

density fluctuation, the G-moments should exhibit following scaling behavior: 

 .             (3) 

Here τ(q) is called the mass exponent. The fractal behavior cannot be extracted in the strict sense 

as the partition number M remains finite, as the limit cannot actually be reached and. But 

one can still obtain significant results by examining the scaling properties of the G-moments in a 

region where is of the order of the phase-space resolution permitted by the experiment.  

Taking the vertical average of G-moments over the sample of events under consideration, one 

can determine the event space average of mass exponent as  

                 (4) 
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Fig 1. Variation of G-moments with phase-space partition number for 

32
S–Ag/Br interaction at 

200 A GeV/c: (a) experiment, (b) FRITIOF and (c) Random number. In all diagrams the 

continuous lines are drawn simply by joining the points. 

 

In the papers [1, 2 & 11] give a systematic and brief descriptions to determine various 

parameters related to multifractal characteristics of density fluctuation. For different q Values of 

<lnGq > have been plotted against lnM in Fig 1. The experimental results, the FRITIOF 

simulated results as well as the results obtained by random number generation are shown in the 

diagram separately. From the above graph, it is very clear that for all three sets of data <lnGq > 

linearly depend on lnM in accordance with equation (3), increasing for q < 0 and decreasing for 

q > 1showing a saturation effect in the large lnM region. This saturation effect is may arise due 

to finiteness of . 

 
 

Fig 2. (a) Event averaged mass exponents <τ(q)> and Lipschitz–Holder exponents <αq > against 

q for 
32

S–Ag/Br interaction at 200 A GeV/c. Data points represent the experimental values and 

the lines represent the corresponding FRITIOF predictions. (b) Multifractal spectral function for 

both the experiment and FRITIOF. The solid curve with points represents experimental results 

and the dotted curve represents the FRITIOF prediction. The straight line is the  

line. 

 

Following equation (4) the <τ(q)> values can be determined for each q from the best linear fit of 

the lnM dependence of <lnGq >. The event space averaged multifractal spectral function  

, 

is introduced through a Legendre transform with the help of Lipschitz–Holder exponent αq , that 

is defined as 
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Since a derivative is involved, it is necessary to determine <αq > for small incremental changes 

in q, especially in the neighbourhood of q = 0, where <f (αq )> has its maximum. Fig 2(a) shows 

the variation of <τq> and <αq> values for the experimental and FRITIOF data with q. Here no 

such significant difference is found between the experimental and simulated results which are 

contradictory to the case of intermittency analysis [10].  A smooth and stable multifractal 

spectral function <f (αq )>  has been obtained both for the experiment and for the FRITIOF. 

Multifractal spectral function <f (αq )> for both experiment and simulated data are plotted against 

<αq> in Fig 2(b), and both satisfy the general characteristics mentioned in [1, 3] such as (i) <f (αq 

)>  is a function of <αq > that is concave downwards, (ii) has a peak at <α0 >, and (iii) the straight 

line <f (αq )> = <αq > tangentially touches both the spectra around <α1>, because <f (α1)> = <α1> 

and <f´ (α1)> = 1. The region above the <f (αq )> = <αq >  line has no physical significance and 

corresponds to an unphysical region. The wide distribution in <f (αq )> and not a delta function 

peaked around α0 observed in the diagram confirms multifractal nature of the density fluctuation 

in each case. The region of the spectrum where the value of <αq > less than unity corresponds to 

the dense region of the spectrum and for the region for which the value of <αq > is greater than 

unity is corresponds the sperse region of density distribution. Both experimental and simulated 

maximum values of <f (αq )> are very close to unity, indicating that the empty bin effect 

particularly in the higher resolution region is marginal in the present case. The FRITIOF 

simulated spectrum is wider than the experimental one. We already know for a pp interaction a 

similar feature has been observed while UA1 data were being compared with GENCL and 

PYTHIA predictions [4]. In the case of AB interactions multifractal characteristics were observed 

both in the experimental data as well as in the Monte Carlo predictions based on a simple 

stochastic model [8].  

 
Fig 3. (a) Experimental values of the intermittency indices (φq ), (q − 1 − <τ(q)>) and (q − 1 

− <τ(q)>
dyn

) are plotted against q for 
32

S–Ag/Br interaction at 200 A GeV/c. The straight lines 

are best linear fit to data. (b) Experimental values of dq/d2 obtained both from SFM (solid 

diamonds) and G-moments (open diamonds) are plotted against q. The continuous (solid and 

dotted) lines represent the corresponding Levy law prediction using equation (9). 

 

For the finiteness of the average number of charged particle, the Gq moments contain statistical 

contribution , this statistical part can be determined by distributing ns particles of an event 

randomly within . It should be remember that in this process short-range correlation 



International Journal in Physical and Applied Sciences 
Volume  07  Issue 11, November  2020 ISSN: 2394-5710 Impact Factor: 5.578 
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com                                      
Double-Blind Peer Reviewed Refereed Open Access International Journal  

  

49 International Journal in Physical and Applied Sciences 
http://ijmr.net.in, Email: irjmss@gmail.com 

 

among the particles, if any, is destroyed. The dynamical contribution can then be extracted 

after eliminating the statistical one. In [11] it has been shown that, for a trivial dynamics the 

dynamical part of <τq >, denoted by <τ(q)>
dyn

, should be equal to (q − 1). The deviation in 

<τ(q)>
dyn

 from (q −1) is the from the nontrivial dynamical contribution. As all three G-moments 

Gq,  and  obey their respective power laws, the following relation may be obtained: 

                   
(5) whereas, the intermittency index φq introduced in equation (1), can also be connected to 

<τ(q)>
dyn

 as [11] 

 

.              (6) 

In Fig 3(a) the variation of φq values along with the (q − 1 − <τ(q)>) and (q − 1 − <τ(q)>
dyn

) 

values against q is shown. From the diagram it is clear that the φq values differ from the 

respective (q − 1 − <τ(q)>
dyn

) values by very small amount. The difference in their values may 

probably be attributed to the different ways of defining SFM and G-moment. The generalized 

Renyi dimensions, denoted by Dq , may be obtained from the intermittency indices as 

               (7) 

Therefore, with the help of equation (6) one can demand 

.                    (8) 

Simultaneously  the anomalous dimensions are defined as 

. 

Where, D is the topological dimension of the supporting space. D = 1stands for the one 

dimensional analysis. The Levy index (μ) is a very useful parameter to classify the properties of 

universal multifractals. For multifractal nature it is found that the value of μ is is lying between 

0<μ< 2. Levy index indicates the degree of multifractality as well as estimates the cascading rate 

in self-similar branching process [16]. The Levy index (μ) can also be utilized to highlight the 

possible mechanism of particle production. Such a characterization of multifractality is possible 

if the underlying density distribution can be described by a Levy stable law. Under a Levy law 

approximation, using anomalous dimensions one can determine the value of μ from the following 

relation [21]: 

              (9) 

In Fig 3b. Experimental values of dq/d2 obtained both from SFM (solid diamonds) and G-

moments (open diamonds) are plotted against q. The lines correspond, respectively, to μ = 1.15 

for the exact values of φq and to μ = 1.25 for the approximate values. If μ were equal to 2, the 

Levy distribution would have transformed into a Gaussian one. Minimum fluctuation in the self-

similar branching processes is expected under such condition. On the other hand, the value of 

dq/d2 become independent of order for μ = 0. This condition corresponds to mono-fractals and 

maximum fluctuation. Under such condition one may expect a second-order phase transition. In 
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our case neither of the above two conditions is satisfied by the μ values obtained. One can see 

that the present values obtained from two different sets of parameters, are very close to each 

other. The fact that μ >1.0, demands the presence of wild type of singularities arising out of 

fluctuations in the density distribution which is non-Poisson like in nature. Here, it can be 

concluded as the mechanism of particle production in the present case of 
32

S–Ag/Br interactions 

may be described in terms of a possible non-thermal phase transition during the cascading 

process. On the other hand, a value of 0 < μ < 1.0 would have indicated soft bound singularities, 

that can be related to a thermal phase transition interspersed in the cascading process. It should 

however be mentioned that the present values of Levy index are less than a previously obtained 

value (μ = 1.6) based on a set of combined data on AB, pA, e+e− and μp interactions [21], but 

are well within the limit allowed by the Levy law description, and do not necessarily warrant a 

thermal phase transition to occur during particle production. 

 

3.2. Takagi’s multifractal moments 

In order to overcome the difficulties of finiteness of the number of charged particle multiplicity 

an alternative approach has suggested by Takagi [12]. According to his methodology a new set 

of multiplicity moments for q > 0 are suggested as 

             (10) 

 

Tq is known as Takagi’s multifractal moments and are not affected by the finiteness of ns. Here, 

pij (= nij /K) is the normalized density function, K is the total number of particles produced in 

Nev interactions and nij is the same as equation (2).  Takagi’s method is based on two 

assumptions, (i) over the considered phase-space interval the density function ρ is uniform, and 

(ii) the multiplicity distribution Pn does not depend on the location of the interval  . The 

above two conditions are found to be valid in the present case where Xη has been used as a phase 

space variable. According to the theory of multifractals, Tq( ) should be a linear function of 

the logarithm of the resolution R( ) as, 

,                                                                 (11) 

where Aq and Bq are two constants which are independent of q. If the linear dependence like that 

of equation (11) is observed over a large range of R( ), following Takagi’s method the 

generalized dimensions can once again be calculated as -  

             (12) 

For q = 1, one may either take the appropriate limit [22], or may introduced the entropy function 

defined as 

                                                    (13) 

The entropy function is also defined as, 

,            (14) 
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Where, D1 is termed as information dimension. If the number of events Nev is quite large one 

will get 

 .           (15) 

Where average bin multiplicity <n> = K/(M. Nev), and therefore, it can be write 

                                      (16) 

for the simplest choice of R( ), = . Replacing  with <n>, the generalized dimensions 

can now be obtained following the relations: 

                                                                                       (17) 

for q ≥ 2. For q = 1, 

.           (18) 

Proceeding in the same way as [12], for a symmetric interval about the central value of 

the distribution, The values of <n ln n> and ln<nq > are calculated with increasing width of the 

interval about the central value ( ) of the distribution according to the procedure 

mentioned in [12]. Our results on Takagi’s method of multifractal analysis have been graphically 

shown by plotting <n ln n>/<n> against ln<n>, in Fig 4(a)–(c), respectively for the experimental 

values in both η and ϕ-space and the FRITIOF prediction in η-space. Similarly the variation of 

ln<n
q
> against ln<n> is shown in the Fig 4(d)–(f). From the slopes of best linear fit to data 

values of the plot <n ln n>/<n> vs ln<n> the infomation dimension (D1) have been calculated 

respectively as , and . Values of generalized dimensions 

for  have been obtained 

 

 
Fig 4. Plot of Takagi’s multifractal moments for 

32
S–Ag/Br interaction at 200 A GeV/c. In all 

diagrams the straight lines represent best linear fit to data. 

 

from the best linear fit of ln<nq> values against ln<n> as shown in Fig 4(d)–(f). For comparison, 

Dq values of different orders obtained from Takagi’s generalized moments are plotted against 

in Fig 5, together with those obtained from the intermittency indices (φq ) and from the 
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dynamical part of Hwa’s multifractal mass exponents <τ(q)>dyn, respectively, making use of 

equations (7) and (8). With increasing q in general we find a monotonous deceasing trend in the 

Dq values. However, the Dq values from Takagi’s method exhibit steepest fall, whereas those 

obtained from the intermittency indices decrease at the slowest rate. Probably because of the 

different ways of defining the multifractal T-moments, and due to the reason that in Takagi’s 

method no attempt has been made to separate the nonstatistical contribution from the statistical 

one, in this case at large q the Dq values differ significantly from those obtained from the SFMs 

and G-moments. However, for a simple Poissonian multiplicity distribution within a given 

interval , the Dq values would all have been equal to unity. Any deviation in their values 

from 1.0 would thus provide us with a measure of nonstatistical fluctuation. This has been found 

in all the methods described above for characterizing multifractality in density fluctuations. 

 

 
Fig 5. Experimental values of the generalized dimensions Dq for 

32
S–Ag/Br interaction at 200 A 

GeV/c. Solid lines are drawn to guide the eye. 

 

On the basis of the fact that only Bernoulli type of fluctuations are responsible for a transition 

from monofractality to multifractality, Bershadski [23] gave a thermodynamic interpretation of 

the observed results in terms of a constant specific heat c: 

            (19) 

A monofractal to multifractal phase transition corresponds to a gap in the value of c from c = 0 to 

a nonzero finite multifractal specific heat. By plotting Dq against ln q/(q − 1) we can, therefore, 

obtain the value of specific heat from the slope of the best linear fit. Such a plot can be found in 

Fig 6, both for the experiment and FRITIOF simulated values. In -space a strict linearity is 

not seen over the entire range of q under consideration, and a linear fit in the range q = 2–5 

resulted into c = 0.329 ± 0.061 ≈ 1/3. On the other hand,  
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Fig 6. Graph to determine the multifractal specific heat for 

32
S–Ag/Br interaction at 200 A 

GeV/c, from the Dq values obtained by using Takagi’s method. The experimental data points in 

η-space are simply connected by a continuous line, whereas, for both the FRITIOF  prediction in 

η-space and the experimental data points in ϕ-space, the straight lines represent best linear fit. 

 

best linear fit of FRITIOF data in -space over q = 2–7 results in c = 0.066 ± 0.009, which is 

much smaller than the corresponding experimental value. On the other hand, in -space linear 

fit once again over the entire range of q (= 2–7) gave us a much smaller value of c (= 0.086 ± 

0.008). The c-value in -space is significantly smaller than a previously obtained value (c = 

1/4) based on an analysis in the azimuthal angle space of similar 
32

S-ion induced experiment at 

same incident energy [24]. As a probable reason for this discrepancy it may be pointed out that 

the analysis presented in [24] has been performed over a set of events with minimum bias, that 

possesses a much wider range of impact parameter values, and also has a much smaller value of 

average shower multiplicity as well as smaller statistics than the present set of experimental data. 

Here the value of c in ϕ-space is also smaller than the predictions of another analysis (c = 0.56) 

on simulated high multiplicity single jet events in the azimuthal angle space [25].   

 

3.3 MFDFA moments 

In many cases the local singularities of particle density functions can be described by a 

power law like,  

                     (20) 

and may be interpreted as a self-similar (or self-affine in two dimension) fractal object with 

dimension DF . Now each phase-space interval will have its own dependence. If all of them 

are characterized by a same DF, the distribution is considered as a geometrically monofractal 

object. If the exponent varies at different X positions then it is a multifractal one. The 

multifractal detrended fluctuation analysis (MF-DFA) has so far not been used extensively for 

multiparticle emission data analysis [15]. The detrended fluctuation analysis (DFA) method [13] 

is a very useful technique for the determination of (mono) fractal scaling properties and the 

detection of long-range correlations in noisy and stationary time series data [14]. Kantelhardt et 

al. [15] have advanced the DFA method for nonstationary and multifractal series, and the 

generalized DFA is said to be the multifractal DFA (MF-DFA) method. The DFA and the MF-

DFA methods are very standard techniques for the time series data analysis, for completeness we 

provide a brief description of the methods in the following section. Let xk: k = 1, 2, . . . , N be a 
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fluctuating series (signal) of length N.The DFA/MF-DFA procedure consists of the following 

five steps: 

 

Step-1: Determine the profile: 

, I = 1, 2, ……., N                             (21) 

 Where  is the mean value of the analyzed signals. 

 

Step 2: Determine the profile:  

Divide the profile into  non-overlapping segments of equal length . One has to 

choose the  value depending upon the signal length. In case, the length N is not a multiple of 

the considered scale parameter s, the same dividing procedure is repeated starting from the 

opposite end of the signal. Hence, in order not to disregard any part of the signal series, usually 

altogether segments of equal length are obtained.  

Step 3: Calculate the local trend for each of the 2Ns segments. This is done by least-square fits of 

the segments (or subseries). Linear, quadratic, cubic or even higher order polynomial may be 

used to detrend the signal, and accordingly the procedure is said to be the MF-DFA1, MF-DFA2, 

MF-DFA3,. . . analysis. Let,  be the best fitted polynomial to an arbitrary segment of the 

signal. Then determine the variance as 

                          (22) 

For N = 1, 2, ……Ns and = Ns+1, …….2Ns is given as, 

                              (23) 

Step 4: The DFA function F is defined by averaging over all the segments, i.e. 

                                              (24) 

On the other hand, the q
th

 order MF-DFA function  is defined as 

                          (25) 

for all  and for the above definition is modified to the following form: 

                            (26) 

In general, the order parameter can take any real value. Note that for the MF-DFA 

function reduces to the standard DFA  function as defined in Eqn. (23). 
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Step 5: Now varying the scale parameter ( ), one can study the scaling behavior of the detrended 

fluctuation functions. If the signal series  possesses long-range (power-law) correlation,  

as well as for large values of  would follow a power-law type of scaling relation such as 

 and                                                (27) 

The exponent  is nothing but the well known Hurst exponent that can be related to the fractal 

dimension as: . According to the value of H,  is considered as long-range anti-

correlated if 0 < H < 0.5; uncorrelated if H = 0.5 and long-range correlated if . On the 

other hand, the , is termed as the generalized Hurst exponent [15].  For stationery time series 

, i.e. the well known Hurst exponent. For a monofractal signal is independent of 

 since the variance  is identical for all the subsignals, and hence Eq. (25) yields identical 

values for all . Here the function can be defined only for , where  is the order of 

the detrending polynomial. Moreover, is statistically unstable for very large S(N/4). If small 

and large fluctuations scale differently, there will be a significant dependence of on . 

Whereas for positive values of , will be dominated by the large variance which 

corresponds to the large deviations from the detrending polynomial, for negative values of q 

major contributions of arise from small fluctuations from the detrending polynomial. Thus 

for positive (negative) values of , describes the scaling behavior of the segment with large 

(small) fluctuations. Knowing the values of  one can easily estimated the multifractal mass 

exponent and the multifractal singularity spectrum . It is very well known that the is 

related to through 

                          (28) 

A non linear spectrum demands the existance of multifractal nature of the analyzed time 

series data. For a monofractal system should be a linear function of . The singularity 

strength function and the multifractal spectrum are connected via Legendre 

transformation [26, 27]: as, 

                                      (29) 

The generalized fractal dimension may be derived from the mass exponent as: 

                                           (30) 

Here these methods is employed to the single-event  distributions of produced charged mesons 

in high-energy nucleus-nucleus collisions. The scale parameter  is nothing but the number of 

partitions in -space. In Fig. 7, I plot the averaged DFA function  with phase space 

partition number (scale) for the 
32

S - Ag/Br data. From Fig.1 it is clear that for large 

values of  would follow a power-law type of scaling relation. In this analysis I vary  from N 
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to N/4, where N is the multiplicity cut. In the region  the scaling relation (27) holds 

good. As the scaling behavior holds well for a fairly large value of in all cases, one  

 

Fig 7. The variation of event averaged DFA fluctuation functions  with scale parameters 

for the 
32

S - Ag/Br interaction at 200A GeV/c. The solid (dotted) lines represent the best fitted 

straight lines to the experimental (UrQMD) data. 

 

may expect that the signal series should possess some kind of long-range (power-law) 

correlation for both experimental and simulated (UrQMD) data. Here I find that H = 1.474 ± 

0.017 (experiment) and H =1.585±0.017 (UrQMD). In all the cases the value of H greater than 

unity again establish the fact that there must present some long range correlation in both 

experimental and simulated (UrQMD) data. Using the relation DF = 2 − H, I estimate the 

values of fractal dimension (DF) as DF = 0.526 ± 0.017 (experiment) and DF = 0.415 ± 0.017 

(UrQMD). It is well known that, for a fractal object the fractal dimension DF is less than DT, the 

topological dimension of the supporting space. For one dimensional analysis the value of DT = 1. 

The deviation of DF from DT is a measure of the degree of fractality. All the values of DF 

obtained from this analysis are much smaller than unity and hence my DFA results demand that 

the  distributions in the interactions are highly fractal. It is also clear that the UrQMD model 

possesses fractal dynamics that is apparently identical to those of the experiments. In our 

previous multifractal analysis using the data of 
32

S -Ag/Br interaction we observed similar 

behaviors. All these observations (present and previous) suggest that (multi)fractality gets 

weakened with increasing multiplicity. In Fig. 8, the variation of event averaged MFDFA 

fluctuation functions with scale parameter s is shown for both experimental and simulated data. 

 

 



International Journal in Physical and Applied Sciences 
Volume  07  Issue 11, November  2020 ISSN: 2394-5710 Impact Factor: 5.578 
Journal Homepage: http://ijmr.net.in, Email: irjmss@gmail.com                                      
Double-Blind Peer Reviewed Refereed Open Access International Journal  

  

57 International Journal in Physical and Applied Sciences 
http://ijmr.net.in, Email: irjmss@gmail.com 

 

Fig 8: The variation of event averaged MFDFA fluctuation functions with scale parameter s. Left 

panel: Results obtained from experimental data  and right panel:  Results obtained from UrQMD 

data. The lines joining points are shown to guide the eye. 

 

From the variation of against the scale parameter it is obvious that there are no 

saturation effects at higher value of  like moments [10] and hence one may conclude that 

function presented here are not significantly influenced by the finiteness of the event 

multiplicity. In Fig. 9 the experimental and simulated values of Hurst exponent for 
32

S - 

Ag/Br interaction are plotted against order . The values of  is determined from the linear 

portion  of vs  graph. For region the values of  decreases slowly 

and there is a sharp fall in the  = −1 to  = 1 region and then  tends to saturate in the 

region . 

 

 

<(q)> 

 

Fig 9. Left Panel: The variation of event averaged hq functions with scale parameter s for 
32

S - 

Ag/Br interaction at 200AGeV/c. The lines joining points are shown to guide the eye. Right 

Panel: The variation of event averaged mass exponent with scale parameters for 
32

S - Ag/Br 

interaction 

 

In Fig. 9. I have also graphically represented how the values of for the experimental and 

UrQMD data vary with . Unlike in the case of intermittancy analysis, here no significant 

difference between the experimental and simulated results is observed. Mass exponents were 

derived from the fluctuation functions for  values between −5 and +5 and plotted 

against the  values. A nonlinear function means multiple scaling, which requires 

a hierarchy of scaling exponents (multiscaling) in order to accurately represent the scaling 

property. The degree of non-linearity of function can give an idea about the degree of 

multifractality. These nonlinear functions have convex downward facing plots, with the degree 

of convexity reflecting the level of heterogeneity in scaling exponents. A smooth and stable 
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multifractal spectral function has been obtained both for the experiment and for the UrQMD 

for 
32

S induced interactions. Multifractal spectra are plotted against in Fig. 10, and satisfy the 

general characteristics [1, 2] such as (i) is a function of  that is concave downwards, and 

(ii) has a peak at . But unlike the Hwa’s multifractal analysis the this moments violates the 

condition (iii) i.e. straight line tangentially touches both the spectra. The  

  

Fig 10. Left panel: Multifractal spectrum function for both experiment and UrQMD. The 

straight line represents .                  Right Panel: Generalized fractal dimension as a 

function of  for both experiment and UrQMD in case of  
32

S - Ag/Br interaction. 

 

region above the line corresponds to an unphysical region. The fact that a wide 

distribution in and not a delta function peaked around  has not been obtained. In the 

present analysis the peak values of the spectra are shifted to a higher value of . All observations 

confirm the multifractal nature of the density fluctuation in each case. The left and right side of 

the spectrum corresponds, respectively, to the dense and sparse regions of density distribution. 

Both simulated and experimental maximum values of are very close to unity, indicating that 

the empty bin effect particularly in higher resolution region, is marginal in the present case. The 

generalized fractal dimension  plotted against the order  in Fig. 10,The values of generalized 

fractal dimensions  determined using MFDFA methods are as follows: 

Interaction

s 
 

Experiment UrQMD 

    

32
S - Ag/Br 

2 0.437  0.0376  0.361  0.0440 

3 0.661  0.0178 0.601  0.0213 

4 0.752  0.0114  0.698  0.0139 

5 0.805  0.0083  0.753  0.0102 
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From the tabulated values of  obtained from the MFDFA method it clear that all values are 

much smaller than those obtained from the previous conventional methods. It is also clear from 

the tabulated values that there exists insignificant difference between the experimental values 

and the corresponding UrQMD predictions in case of 
16

O - Ag/Br interactions, but there exists 

some discrepancies in case of 
32

S - Ag/Br Interactions. In this present investigation a distinct and 

systematic increase in is found with the order number q. This behavior is quite different from the 

behavior in the  values obtained from the conventional methods. It should mention that the  

values obtained from Takagi’s method exhibit a sharp fall. This is probably because of the fact 

that Takagi moments are not free from the statistical noise [12]. 

 

4. Discussion 

In this analysis I presented a systematic analysis of the pseudorapidity fluctuation of charged 

mesons produced in 
32

S - Ag/Br interaction at 200A GeV in terms of the Hwa’s multifractal 

moments, Takagi’s moments and DFA and MF-DFA methods. To understand the underlying 

mechanism(s) of particle production in these interactions, the experimental results are simulated 

by using the Fritiof model in case of first two moments and UrQMD model for the third 

technique. From the above analysis it is established that experimental data along with all 

simulated data behave like (multi)fractal system. The nature of , and the singularity 

spectra also confirm the presence of multifractality in the data as well as in the simulation. The 

nature of these spectra and the estimated values of the Hurst exponent demand that the origin 

of fractality is of the two, three or higher order particle correlation in all cases. The MF-DFA 

prediction of the generalized fractal dimensions are consistently lower than that obtained from 

previous techniques like scale factorial moment analysis, Hwa’s multifractal analysis and 

Takagi’s method. In case of MFDFA moments it should noted that within the error margins the 

experimental results cannot be discriminated from their UrQMD values. The observations signify 

that the MFDFA technique like Hwa’s multifractal moments and Takagi’s moment is probably 

not sufficiently sensitive to the nature of fluctuation present in the data. A reliable method of 

filtering out the statistical noise from the MF-DFA function is needed to make the technique 

more effective. 
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