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Abstract 

Several issues in pure and applied mathematics have the fixed point of some mapping F as their 

solutions. Therefore, a number of numerical analysis and approximation theory procedures involve 

successive approximations to the fixed point of an approximate mapping to be obtained. In this 

paper, we also established our objective to address fixed point theory and its applications in metric 

spaces. 
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Introduction 

The well-known Banach [1] contraction principal states that “If X is complete metric space and f is 

a contraction mapping on X into itself,then f has unique fixed point in X”. Many mathematicians 

worked on this principal. Kanan[4] proved that “If T is self-mapping of a complete metricspace X 

into itself satisfying : 

Let f and g be self-mappings of a metric space 

(X, d).  The mappings f and g are said to be compatible if       (        )     whenever 

*  +   
  is a sequence in X such that                                       

 

In 1998, Liu, Xu and Cho[64] proved the following theorem 

 

Main Result 

Theorem 1.Let f be continuous self-mapping of a complete metric space (X, d).  Then following 

are equivalent: 

i) f has a fixed point in X. 

ii) there exists z  X, a mapping g: X →X and functions ϕ from X into  

 

[0, ) such that f and g are compatible, g(X)   f(X), g is continuous and (*)d(gx,gy) ≤ r d(fx,z)+[ ϕ 

(fx)- ϕ (gx)] 

for all x,y   X and some   r   [0,1) 

Now we prove the following theorem: 

 

Theorem 2. Let f and S be continuous self-mappings of a complete 

metric space (X, d).  Then following are equivalent: 

(1.1)  f and S have a common fixed point. 

(1.2) there exists a mapping g : X →X and functions ϕ, ѱ from X into[0, ) such that pairs  {f, g}  

and  {S, g}  are compatible, g(X) f(X), 

g(X) S(X), g is continuous and 
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( d(gx,gy) ≤   d(fx,Sy) +    d(Sx,fy) +    d(fx,gx) +   d(fy,gy) 

+    d(Sx,gx) +   d(Sy,gy) +    d(fx,gy) +    d(fy,gx) 

+   d(Sx,gy) +    d(Sy,gx) + [ϕ (fx) - ϕ (gx)] 

+ [ѱ (Sy) - ѱ (gy)]  for all x, y  X, with 

   ,  , ... ,    are in [0, 1) where    +   +   +   +   +   +2   +2  < 1 

and  +    +    +    +    +    < 1. 

 

Proof:  For (1.1) ⇒ (1.2) 

Suppose w is the fixed point of f and S then fw = w and Sw = w. 

Take gx = w for all x   X.  Let ϕ and ѱ be constant.Also, 

       (         ) = d(fw, w) = d(w, w) = 0  

and 

       (         ) = d(Sw, w) = d(w, w) = 0. 

 

Hence compatibility follows. Thus, (2.2.1) ⇒ (2.2.2). 

Now, for (2.2.2) ⇒ (2.2.1).  Let     X be an arbitrary point of X.  Since g(X)   f(X), g(X)   S(X), 

so we construct a sequence *  +   
  , in X by 

g     = f   = S   for n ≥ 1. From (**) it follows that 

 

    = d(g  , g    ) ≤   d(f  , S    ) +   d(S  , f    ) +   d(f  , gxj) 

 

+   d(f    , g    ) +   d(S  , g  ) +   d(S    , g    ) 

 

+   d(f  , g    )+   d(f    , g  ) +   d(S  , g    ) 

 

+    d(S    , g  ) + [ϕ(f  ) – ϕ(g  )] 

+ [ѱ(S    ) - ѱ(g    )] 

 

=  d(f  , f    ) +    d(f    f    ) +    d(f  , f    ) 

 

+   d(f    , f    ) +   d(f  , f    ) +   d(f    , f    ) 

 

+   d(f  , f    ) +   d(f    , f    ) +   d(f    f    ) 

 

+    d(f    , f    ) + [ϕ(f  ) – ϕ(f    )] 

 

+ [ѱ(f    ) - ѱ(f    )] 

 

 

Put    = d(f  , f    ) for n ≥ 0. 
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     ≤      +      +      +        +      +        +      +        +    +        +[ϕ(   ) – 

ϕ(     )] + [ѱ(     ) - ѱ(     )] 

 

     = d(g  , g    ) ≤ a   + b[ϕ(   ) – ϕ(     )] + b[ѱ(     ) - ѱ(     )] 

 

 

Where 

 

  
                     
               

            
 

               
 

 

 

On adding above inequality from j = 0 to j = n 

 

∑    

 

   

   ∑     ∑, (   )    (     )-

 

   

   ∑, (     )     (     )- 

 

   

 

   

 

 

 

Since d(  ,  ) ≥ 0 and 0 ≤ a ≤ 1, we get 

 

∑      
 

   
    

 

   
, (   )   (     )-   

 

   
 , (   )     (     )- 

 

   

 

 

Therefore, the series ∑   
 
    is convergent. For any n, p ≥ 1, we 

 

have by triangle inequality 

 

  (         )   ∑   

     

   

 

 

This implies that  *   +   
 is a Cauchy sequence in X. Since X is 

complete, so there exists a point t   X such that            . But f, S and g are continuous 

and pairs f, g and S, g are compatible, hence 

 

   
   

 (         )    ⇒  (     )                     

 

   
   

 (         )    ⇒  (     )                     
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Thus ft = gt = St. 

 

Now from (**), 

d(ft,     )=d(gt,g  )≤(                 )d(   , ft)+(  +  )d(   ,     ) 

 

+  (  +  )d(ft,      ) +[ѱ(f    ) - ѱ(f    )] 

 

On adding above inequality for j = 0 to j = n, we obtain 

 

∑ (        )  (                  )

 

   

∑ (      ) 

 

   

 

 

 (      )∑ (         )   (     )∑ (        ) 

 

   

 

   

 

 

   ∑, (     )     (     )- 

 

   

 

 

(                    )∑ (        )  (                 ) (      )

 

   

 

 (      )∑ (         )

 

   

 

   ∑, (     )     (     )- 

 

   

 

Or 

∑ (        ) 

 

   

    (      )   ∑ (         )

 

   

  , (   )     (     )- 

 

 

Where 
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Since the series ∑  (         ) 
 
    is convergent and  

                            it follows that the series 

∑  (      ) 
 
   is also convergent. This implies that 

                             . 

This completes the proof of the theorem. 

Above  Theoremextends, improvesand  unifies  the 

Theorem of Jungck [48], Theorem 2 of Fisher [36] and the following 

Theorem 3.3 of Liu, Xu and Cho [64]. 
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