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Abstract 

In this paper we use rational inequality to prove fixed points theorems in fuzzy metric space. Our 

results extend the result of many other authors existing in the literature. Main aim of this paper is 

to show applications of fixed point theorem in fuzzy metric space.     
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1. Introduction 

The foundation of fuzzy mathematics is laid by Lofti A. Zadeh [3] with the introduction of fuzzy 

sets in 1965. This foundation represents vagueness in everyday life. Subsequently several authors 

have applied various forms of general topology of fuzzy sets and developed the concept of fuzzy 

space.In 1975, Kramosil and Michalek [5] introduced concept of fuzzy metric space. In 1988, 

Mariusz Grabiec [4] extended fixed point theorem of banach and eldestien to fuzzy metric spaces 

in the sense of Kramosil and Michalek [5]. In 1994, George et. al. [1] modified the notion of 

fuzzy metric spaces with the help of continuous t-norms. A number of fixed point theorem have 

been obtained by many authors by using the concept of compatible map, implicit relation, 

weakly compatible map, R-weakly compatible map [7 -14]. Also R. K. Saini and Vishal Gupta 

[9-10] proved some fixed point theorems in fuzzy metric space. The present paper extends the 

result of Mariusz Grabeic [4] and also many other authors existing in the literature. 

2. Preliminaries 

In this section, we define some definitions and results which are used in sequel. 

Definition 2.1 [3] Let X be any set. A fuzzy set A in X is a function with domain X and values in 

[0, 1]  

Definition 2.2 [2] A binary operation * : [0, 1] x [0,1] → [0,1] is a continuous t-norms if ([0, 1], 

*) is an abelian topological monoid with the unit 1 such that a* b ≤ c * d whenever a ≤ c and b ≤ d 

for all a, b, c, d ∈ [0, 1]  
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Definition 2.3 [5] A triplet (X, M, *) is a fuzzy metric space if X is an arbitrary set, * is 

continuous t-norm and M is a fuzzy set on X
2
 x (0, ∞) satisfying the following conditions, for all 

x, y, z ∈ X, such that t, s ∈ (0, ∞). 

F1. M(x, y, z) > 0 

F2. M(x, y, t) = 1 iff x = y 

F3. M(x, y, t) = M(y, x, t) 

F4. M(x, y, t) * M(y, z, s) ≤ M(x, z, t + s) 

F5. M(x, y, .) : [0, ∞) → [0,1] is continuous. 

Then M is called a fuzzy metric on X and M(x, y, t) denotes the degree of nearness between x 

and y with respect to t.  

Definition 2.4 [4] Let (X, M, *) is a fuzzy metric space then a sequence {xn}∈X is said to be 

convergent to a point x if lim𝑛→∞ 𝑀(xn, x, t) = 1 , ∀ t > 0 

Definition 2.5 [4] Let (X, M, *) is a fuzzy metric space then a sequence {xn}∈X is called a 

Cauchy sequence if lim𝑛→∞ 𝑀(xn + p, xn, t) = 1 , ∀ t > 0 and p > 0 

Definition 2.6 [4] Let (X, M, *) is a fuzzy metric space. If every Cauchy sequence is convergent 

in it, then it is called complete fuzzy metric space. If every sequence contains a convergent 

subsequence, then it is called compact 

Lemma 2.7 [4] For all x, y ∈ X, M(x, y, .) is non-decreasing. 

Lemma 2.8 [11] If there exist k ∈ (0, 1) such that M(x, y, kt) ≥ M(x, y, t), ∀ x, y ∈ X and t ∈ (0, 

∞), then x = y 

3. Main Result 

We prove the following theorems.  

Theorem 1 - Let (X, M,*) be a complete fuzzy metric space. and f : X → X be a mapping 

satisfying 

   M(x, y, t) = 1      (3.1) 

And   M(fx, fy, kt) ≥ 𝜆(x, y, t)    (3.2) 

Where 𝜆(𝑥,𝑦, 𝑡)=

𝑚𝑖𝑛  
𝑀 𝑦 ,   𝑓𝑦 ,   𝑡  [1+𝑀 𝑥 ,   𝑓𝑥 ,   𝑡 ]

1+𝑀 𝑥 ,   𝑦 ,   𝑡 
,
𝑀 𝑥 ,   𝑓𝑥 ,   𝑡  [1+𝑀 𝑦 ,   𝑓𝑦 ,   𝑡 ]

1+𝑀 𝑓𝑥 ,   𝑓 𝑦 ,   𝑡 
,𝑀 𝑓𝑥, 𝑓𝑦, 𝑡 ,𝑀(𝑥,𝑦, 𝑡)    
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          (3.3) 

for all x, y ∈ X and k ∈ (0, 1). Then f has a unique fixed point. 

Proof-  Let x ∈ X be any arbitrary point in X. Let us consider a sequence {xn} in X such that fxn 

= fxn + 1, ∀ n ∈ N  

First our aim is to show {xn}is a Cauchy sequence. 

Let x = xn – 1 and  y = xn put in (3.2), we get 

M(fxn – 1, fxn, kt) ≥ 𝜆(xn – 1, xn, t) 

=> M(xn , xn + 1, kt) ≥ 𝜆(xn – 1, xn, t) 

Then M(xn , xn + 1, kt) = M(fxn – 1, fxn, kt)  ≥ 𝜆(xn – 1, xn, t)   (3.4) 

Now 𝜆(xn – 1, xn, t) =                𝑚𝑖𝑛  

𝑀 xn ,𝑓xn ,𝑡   1+𝑀 𝑥𝑛−1,𝑓𝑥𝑛−1 ,𝑡  

1+𝑀 xn−1 ,   xn ,   𝑡 
,
𝑀 𝑥𝑛−1 ,𝑓𝑥𝑛−1,𝑡   1+𝑀 xn ,𝑓xn ,𝑡  

1+𝑀 𝑓𝑥𝑛−1 ,   𝑓𝑥𝑛 ,   𝑡 
,

𝑀 fxn−1 ,   𝑓xn ,   𝑡            ,                 𝑀(xn−1,   xn ,   𝑡)
  

      =  𝑚𝑖𝑛  

𝑀 xn ,xn +1,𝑡   1+𝑀 𝑥𝑛−1,𝑥𝑛 ,𝑡  

1+𝑀 xn−1,   xn ,   𝑡 
,
𝑀 𝑥𝑛−1 ,𝑥𝑛 ,𝑡   1+𝑀 xn ,xn +1 ,𝑡  

1+𝑀 𝑥𝑛 ,   𝑥𝑛+1,   𝑡 
,

𝑀 xn ,   xn+1 ,   𝑡            ,                 𝑀(xn−1 ,   xn ,   𝑡)
  

      = min 𝑀 xn ,   xn+1,   𝑡 ,𝑀(xn−1,   xn ,   𝑡)   

If 𝑀 xn ,   xn+1 ,   𝑡  ≤ 𝑀(xn−1 ,   xn ,   𝑡) 

M(xn , xn + 1, kt) ≥ 𝑀 xn ,   xn+1 ,   𝑡 , by (3.4) 

=> xn = xn + 1 , by Lemma (2.8) 

=> Sequence {xn} is a Cauchy sequence. 

If 𝑀 xn ,   xn+1 ,   𝑡  ≥ 𝑀(xn−1 ,   xn ,   𝑡) 

Now by simple induction, for all n and t > 0 

M(xn , xn + 1, kt) ≥ M x, 𝑥1,
𝑡

𝑘𝑛−1                                                           (3.5) 

Now for any positive integer ‘s’ we have  

𝑀 xn ,   xn+s ,   𝑡  ≥ M 𝑥𝑛 ,𝑥𝑛+1 ,
𝑡

𝑠
  * M 𝑥𝑛+1, 𝑥𝑛+2 ,

𝑡

𝑠
  *…… *M 𝑥𝑛+𝑝−1 ,𝑥𝑛+𝑝 ,

𝑡

𝑠
  

𝑀 xn ,   xn+s ,   𝑡  ≥ M 𝑥, 𝑥1,
𝑡

𝑠𝑘𝑛  * M 𝑥, 𝑥1,
𝑡

𝑠𝑘𝑛  *…… * M 𝑥,𝑥1,
𝑡

𝑠𝑘𝑛  
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                   By(3.5) 

as n → ∞, and using (3.1) 

lim
𝑛→∞

 𝑀 xn ,   xn+s ,   𝑡  = 1, by (3.1) 

=>Sequence {xn} is a Cauchy sequence. 

Since (X, M, *) is a complete fuzzy metric space.  

Then sequence {xn} is convergent in it. 

Let {xn} converges to u ∈ (X, M, *)      (3.6) 

Now our aim is to show u is a fixed point of f. 

Let us consider  

M(u, x n+ 1, t) * M(x n+ 1, fu, t) ≤ M(u, fu, t) , by(F5) 

M(u, fu, t) ≥ M(u, x n+ 1, t) * M(f𝑥𝑛 , fu, t) 

M(u, fu, t) ≥ M(u, x n+ 1, t) * 𝜆(𝑥𝑛 ,𝑢,
𝑡

2𝑘
), by (3.4)     

      = 𝜆(𝑥𝑛 ,𝑢,
𝑡

2𝑘
) * M(u, x n+ 1, t)     (3.7) 

Now 𝜆(𝑥𝑛 ,𝑢,
𝑡

2𝑘
) =  

𝑚𝑖𝑛

 
 
 

 
 𝑀  𝑢,𝑓𝑢,

𝑡
2𝑘   1 + 𝑀 𝑥𝑛 , 𝑓𝑥𝑛 ,

𝑡
2𝑘 

 

1 + 𝑀 xn ,   u,   
𝑡

2𝑘 
,
𝑀  𝑥𝑛 , 𝑓𝑥𝑛 ,

𝑡
2𝑘   1 + 𝑀 u, 𝑓𝑢,

𝑡
2𝑘 

 

1 + 𝑀 𝑓𝑥𝑛 ,   𝑓𝑢,   
𝑡

2𝑘 
,

𝑀 fxn ,   𝑓u,   
𝑡

2𝑘
            ,                 𝑀 xn ,   u,   

𝑡

2𝑘
  

 
 

 
 

 

as n → ∞ , by (3.1) and (3.7), we get 

𝜆(𝑢, 𝑢,
𝑡

2𝑘
) = min 𝑀  𝑢, 𝑓𝑢,

𝑡

2𝑘
 , 1       (3.8) 

If 𝑀 𝑢, 𝑓𝑢,
𝑡

2𝑘
  ≥ 1 

=> 𝜆(𝑢,𝑢,
𝑡

2𝑘
) = 1 

Then by (3.7) and (2.3) 

u is a fixed point of f. 
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If 𝑀 𝑢, 𝑓𝑢,
𝑡

2𝑘
  ≤ 1 

Then 𝜆(𝑢,𝑢,
𝑡

2𝑘
) = 𝑀 𝑢, 𝑓𝑢,

𝑡

2𝑘
 , by (3.8) 

Hence from (3.7) 

M(u, fu, t) ≥ 𝑀 𝑢, 𝑓𝑢,
𝑡

2𝑘
  * M(𝑥𝑛+1, u, t)     (3.9) 

as n → ∞ in (3.9) and using (3.1) and Lemma (2.8) 

We get fu = u 

Uniqueness  

Now we show that u is an unique fixed point of f. 

Let u and 𝑣 ∈ 𝑋are two fixed points of  f . 

Then fu = u and fv = v 

Consider  

1 ≥ M(v, u, t) = M(fu, fv,t) ≥ 𝜆(𝑣, 𝑢,
𝑡

𝑘
)           (3.10) 

where 

𝜆(𝑣, 𝑢,
𝑡

𝑘
) =     

𝑚𝑖𝑛  
𝑀 𝑢 ,   𝑓𝑢 ,   

𝑡

𝑘
   [1+𝑀 𝑣,   𝑓𝑣 ,   

𝑡

𝑘
 ]

1+𝑀 𝑣,   𝑢 ,   
𝑡

𝑘
 

,
𝑀 𝑣 ,   𝑓𝑣 ,   

𝑡

𝑘
  [1+𝑀 𝑢 ,   𝑓𝑢 ,   

𝑡

𝑘
  ]

1+ 𝑀 𝑓𝑣 ,𝑓  𝑢 ,   
𝑡

𝑘
 

,𝑀 𝑓𝑣,𝑓𝑢,
𝑡

𝑘
 ,𝑀(𝑣,𝑢,

𝑡

𝑘
)  

=𝑚𝑖𝑛  
𝑀 𝑢 ,   𝑢 ,   

𝑡

𝑘
    1+𝑀 𝑣,   𝑣,   

𝑡

𝑘
  

1+𝑀 𝑣 ,   𝑢 ,   
𝑡

𝑘
 

,
𝑀 𝑣,   𝑣,   

𝑡

𝑘
   1+𝑀 𝑢 ,   𝑢 ,   

𝑡

𝑘
   

1+ 𝑀 𝑣,   𝑢 ,   
𝑡

𝑘
 

,𝑀  𝑣,𝑢,
𝑡

𝑘
 ,𝑀 𝑣, 𝑢,

𝑡

𝑘
      

= 𝑚𝑖𝑛  
1 [1+1]

1+𝑀 𝑣,   𝑢 ,   
𝑡

𝑘
 

,
1 [1+1]

1+ 𝑀 𝑣 ,   𝑢 ,   
𝑡

𝑘
 

,𝑀 𝑣,𝑢,
𝑡

𝑘
 ,𝑀(𝑣, 𝑢,

𝑡

𝑘
)  ,  by (F2) 

= 𝑚𝑖𝑛  
1 [1+1]

1+1
,

1 [1+1]

1+ 1
, 1, 1  ,             by (3.1) 

= 1 

Then use in (3.10) 

1≥ M(v, u, t) ≥ 1 

=> M(v, u, t) = 1 
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=> v = u 

There exists unique fixed point of f.                                               

Theorem 2 - Let (X, M,*) be a complete fuzzy metric space. and f : X → X be a mapping 

satisfying 

   M(x, y, t) = 1       

and     M(fx, fy, kt) ≥ (φ1φ2 ……φ𝑛)[𝜆(x, y, t)]    ,        (3.11) 

Where 𝜆(𝑥, 𝑦 , 𝑡) = 

𝑚𝑖𝑛  
𝑀 𝑦 ,   𝑓𝑦 ,   𝑡  [1+𝑀 𝑥 ,   𝑓𝑥 ,   𝑡 ]

1+𝑀 𝑥 ,   𝑦 ,   𝑡 
,
𝑀 𝑥 ,   𝑓𝑥 ,   𝑡  [1+𝑀 𝑦 ,   𝑓𝑦 ,   𝑡 ]

1+𝑀 𝑓𝑥 ,   𝑓 𝑦 ,   𝑡 
,𝑀 𝑓𝑥, 𝑓𝑦, 𝑡 ,𝑀(𝑥,𝑦, 𝑡)    

for all x, y ∈ X and k ∈ (0, 1), φ𝑖  ∈ Ψ, for i = 1, 2, …, n 

where Ψ is defined as Ψ = { φ, where φ : [0,1] → [0,1] } is continuous function such that 

φ 1 =  1 , φ 0 = 0 and φ𝑖 𝑎  ≥ a , for such 0 < a < 1 and i = 1, 2, …, n              

               (3.12) 

Then f has a unique fixed point. 

Proof – Since φ ∈ Ψ => φ𝑖 𝑎  ≥ a , for each 0 < a < 1 and i = 1,2,…,n, Then by (3.11) 

M(fx, fy, kt) ≥ (φ1φ2 ……φ𝑛)[𝜆(x, y, t)]  

                     =  φ1φ2 ……φ𝑛−1 φ𝑛  [𝜆(x, y, t)]  

                        ≥  φ1φ2 ……φ𝑛−1 𝜆(x, y, t) , by (3.12) 

                          ………………… 

               ………………... 

   ≥  𝜆(x, y, t), by (3.12) 

=>M(fx, fy, kt) ≥ 𝜆(x, y, t) 

Now applying Theorem-1, we get required result. 

i.e. f  has a unique fixed point. 

Applications  

In this section, we give some applications related to our results. 
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Let us define 𝜱: [0, ∞) → [0, ∞) and 𝜱(t) =  𝜙 𝑡 𝑑𝑡
𝑡

0
 , ∀ t > 0 be a non decreasing and 

continuous function. For each 𝜖 > 0, 𝜙(𝜖) > 0 Also implies that 𝜙(𝑡) = 0 iff t = 0 

Theorem 3 - Let (X, M,*) be a complete fuzzy metric space, and f : X → X be a mapping 

satisfying 

   M(x, y, t) = 1  

  

                     and  𝜙 𝑡 𝑑𝑡
M(fx,fy ,kt ) 

0
 ≥  𝜙 𝑡 𝑑𝑡

𝜆(x,y ,t)] 

0
  

Where 𝜆(𝑥, 𝑦, 𝑡) = 

𝑚𝑖𝑛  
𝑀 𝑦 ,   𝑓𝑦 ,   𝑡  [1+𝑀 𝑥 ,   𝑓𝑥 ,   𝑡 ]

1+𝑀 𝑥 ,   𝑦 ,   𝑡 
,
𝑀 𝑥 ,   𝑓𝑥 ,   𝑡  [1+𝑀 𝑦 ,   𝑓𝑦 ,   𝑡 ]

1+𝑀 𝑓𝑥 ,   𝑓 𝑦 ,   𝑡 
,𝑀 𝑓𝑥, 𝑓𝑦, 𝑡 ,𝑀(𝑥,𝑦, 𝑡)  

for all x, y ∈ X and k ∈ (0, 1), 𝜙 ∈ 𝜱 

Then f has a unique fixed point. 

Proof – By taking 𝜙 𝑡  = 1 and applying Theorem-1, we get the result. 

Theorem 4 - Let (X, M,*) be a complete fuzzy metric space and f : X → X be a mapping 

satisfying 

   M(x, y, t) = 1   

  and   𝜙 𝑡 𝑑𝑡
M(fx,fy ,kt ) 

0
 ≥ (φ1φ2……..φ𝑛  )  𝜙 𝑡 𝑑𝑡

𝜆(x,y,t)] 

0
  

 

Where 𝜆(𝑥, 𝑦, 𝑡) = 

𝑚𝑖𝑛  
𝑀 𝑦 ,   𝑓𝑦 ,   𝑡  [1+𝑀 𝑥 ,   𝑓𝑥 ,   𝑡 ]

1+𝑀 𝑥 ,   𝑦 ,   𝑡 
,
𝑀 𝑥 ,   𝑓𝑥 ,   𝑡  [1+𝑀 𝑦 ,   𝑓𝑦 ,   𝑡 ]

1+𝑀 𝑓𝑥 ,   𝑓 𝑦 ,   𝑡 
,𝑀 𝑓𝑥, 𝑓𝑦, 𝑡 ,𝑀(𝑥,𝑦, 𝑡)  

for all x, y ∈ X and k ∈ (0, 1), 𝜙 ∈ 𝜱 and φ𝑖  ∈ Ψ ,for i = 1, 2, …., n 

Then f has a unique fixed point. 

Proof – Since φ𝑖 (a) ≥ a , for any φ𝑖 ∈ Ψ ,for i = 1,2,….,n 

Therefore φ1(𝑎) ≥ a, φ2 𝑎 ≥  a ,….  ,φ𝑛   𝑎 ≥  a for each 0 < a < 1 

  𝜙 𝑡 𝑑𝑡 ≥
M fx ,fy ,kt  

0
 φ1 φ2 φ3 ……  φ𝑛   { 𝜙 𝑡 𝑑𝑡}

𝜆(x,y ,t)] 

0
            

                               =  φ1 φ2 φ3 ……φ𝑛−1 φ𝑛  { 𝜙 𝑡 𝑑𝑡}
𝜆(x,y,t)] 

0
 

                               ≥  φ1 φ2 φ3 ……φ𝑛−1 { 𝜙 𝑡 𝑑𝑡
𝜆(x,y,t)] 

0
} 

                                   ……………………………………….. 

                                   ……………………………………….. 
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                 ≥  𝜙 𝑡 𝑑𝑡
𝜆(x,y ,t)] 

0
 

Then by theorem-3, f has a unique fixed point 
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