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Abstract: RM codes are familiar and important codes. Ternary RM codes are interpreted in 

terms of super-imposition. A new decoding algorithm for a class of Simple Iterated codes is 

proposed. It plays central role in decoding algorithm. In this paper, a new decoding 

algorithm for Ternary RM codes is presented along with examples. As compared to binary 

RM code, ternary RM code has stronger role of securing the transmission of the messages, 

has enhanced utility, and has increased detection and correcting capability.   
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I. INTRODUCTION 

                Muller first put forward these codes. A decoding algorithm for these codes was 

devised by Reed. In the decoding algorithm, Majority-logic was used which is based upon the 

concept of finite geometry. A majority-logic decoding algorithm can decode Finite geometry 

codes including Euclidean geometry (EG) and Projective geometry (PG) codes [Peterson and 

Weldon Jr. (1972), Goethals and Delsarte (1968)]. Peterson and Weldon Jr.(1972), Welden 

Jr. (1969), and Chen (1971, 1972)  showed that in a decoder the number of majority-logic 

gates used can be reduced. Rodolph and Hartmann (1973) showed that complexity of decoder 

may be reduced to a great extent. But it can be done at the expense of decoding-delay. For 

first-order binary RM codes, MacWilliams and Sloane (1977) proposed a decoding 

algorithm. Tokiwa, Sugimura, Namekawa and Kasahara (1982) interpreted binary RM codes 

in terms of the concept of superimposition and presented new decoding algorithm. They 

compared their own decoding algorithm with conventional algorithm which is there for cyclic 

binary RM codes in relation with problem of the decoding-delay.  

II. BINARY RM CODES 

Def.1. [Peterson (1961)] Let there be two integers r and m such that 0 ≤ r ≤ m. Then there 

exists a binary code having length n = 2
m
, min. distance as d = 2

m-r
, and information-symbols 

k = 1 + 
m

C1 + 
m
C2 +   .   .   .   + 

 m
Cr . It is called rth order binary RM code, written as r-RM 

binary code or (r, n = 2
m
)RM binary code.   

Def.2. [Peterson (1961), and MacWilliams and Sloane (1977)] Let v0 is a vector, whose           

n = 2
m

 components are all 1s. Let  v1 , v2 ,   .   .   .    , vm be row-vectors of an m × 2
m
 matrix, 

having its ith column as binary representation of integer i, where i = 0, 1,   .    .   .   , 2
m 

- 1. 

Clearly, each of v1, v2, ,vm has n = 2
m
 components. As a result, the number of columns of the 

matrix will be n = 2
m
. Then the (r, n = 2

m
) binary Reed-Muller code is k-dimensional     

vector-space. The vectors v0, v1, v2,   .   .   .   , vm and also all vector-products of these vectors 

taken r or fewer at a time, are basis vectors of this k-dimensional vector-space, where k is 

given by: k = 1 + 
m

C1 + 
m
C2 +   .    .    .    + 

 m
Cr . Note that vector-product of vectors u and v, 

where u  = (u1, u2,   .   .   .   , un) and v = (v1, v2,   .   .   .   ,vn), is given by                                        

u. v = (u1v1, u2v2,   .   .   .   , unvn).  

                If m = 3, then the length of (r, n = 2
m
) binary RM code will be n = 2

m
 = 2

3
 = 8. 

Therefore, we will have basis vectors as follows:                                               
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 v0 = 11111111   0th
 order            

v0 = 11111111
v1 = 01010101
v2 = 00110011
v3 = 00001111

    1st
 order 

   

  v0 = 11111111
   v1 = 01010101
   v2 = 00110011
    v3 = 00001111
v1v2 = 00010001
v1v3 = 00000101
v2v3 = 00000011 

 
 
 
 
 
 

 2
nd

 order   

       v0 = 11111111
        v1 = 01010101
         v2 = 00110011
         v3 = 00001111
     v1v2 = 00010001
     v1v3 = 00000101
     v2v3 = 00000011
v1v2 v3 = 00000001 

 
 
 
 
 
 
 

 3rd  order 

(arithmetic operations are modulo 2) 

Fig.1.Basis Vectors for (r, n = 2
m

) Binary RM Code of Length n= 2
m

 = 2
3
 = 8 

So, these are basis vectors of 3-RM, each of length 8. The linear combinations of all these 

vectors will give all the codewords present in rth order binary RM code. 

III. TERNARY RM CODES 

Def.3. For r and m, 0 ≤ r ≤ m, r and m being any integers, there exists code known as rth 

order ternary RM code having length n = 3
m

, information-symbols k = 1 + 
m
C1 + 

m
C2 +  .  .  .  

+ 
 m

Cr , and  minimum distance d = 3
m-r

.  It will be referred to as (r, n = 3
m
) ternary                

Reed-Muller code or  r-Reed-Muller ternary code.  

Def.4. Let v0 is a vector, whose n = 3
m
 components are all 2’s. Let there be an m × 3

m
 matrix 

having v1 , v2 ,   .   .   .   , vm as row vectors, where its ith column describes the ternary 

representation of integer i, where i = 0, 1,   .   .   .   , 3
m 

-1. Clearly, each of v1, v2,   .   .   .   ,vm 

has n = 3
m
 components. As a result, the number of columns of the matrix will be n = 3

m
. Then 

the (r, n = 3
m
) ternary Reed-Muller code is k-dimensional vector-space having v0, v1, v2,   .   .   

.    ,vm and also all vector products of these vectors taken r or fewer at a time as basis-vectors 

, k being k  = 1 + 
m
C1 + 

m
C2 +   .   .   .    + 

 m
Cr. It should again be noted that vector-product of 

the two vectors u and v, where u = (u1, u2,   .   .   .   , un) and v = (v1, v2,   .   .   .   ,vn), is given 

by u. v = (u1v1, u2v2,   .   .   .    , unvn).  

                Let m = 2. Therefore, required variables will be v0, v1, and v2. Length of ternary 

RM code will be n = 3
m

 = 3
2
 = 9. Because 0 ≤ r ≤ m implies that 0 ≤ r ≤ 2 which means that 

maximum value of r will be 2. So, r = 0, r = 1, and r = 2. So, ternary RM code will be of 0
th

 

order, 1
st
 order, and 2

nd
 order. The basis vectors of this ternary RM code will be as shown 

below: 

 v0 = 222222222   0th
 order 

 
v0 = 222222222
v1 = 012012012
v2 = 000111222

 1st
 order     

    v0 = 222222222
    v1 = 012012012
    v2 = 000111222
v1v2 = 000012021

    2nd order 

(arithmetic operations are modulo 3) 
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Fig.2.Basis Vectors for (r, n = 3
m

)Ternary RM Code of Length n=3
m

 = 3
2
 = 9 

The linear combinations of all these basis vectors will give all the codewords present in the 

ternary (r, n = 3
m
, m = 2) RM code. 

                The rth order ternary RM codes can be interpreted in terms of the superposition as 

shown in the fig. 3., where two codes of length n superimpose to give a new code of length 

2n. 

 

                                               BLK(1)                              BLK(2) 

                         A: a codeword in an [n, k, d] code, B: a codeword in [n, k
/
, 2d] code 

Fig.3.Construction of Super-imposed Code 

Constituent codes, which contain codewords A and B respectively, are called sub-codes. 

Therefore, super-imposed code can be decomposed into sub-codes which have codewords A, 

B respectively. Hence, inverse operation of super-imposition is decomposition. 

Theorem 1. [MacWilliams-Sloane (1977)]: For r = 1, 2,  .  .  .  , m - 1, r being any integer,           

(r, 2
m

) binary RM code can be split or decomposed into sub-codes: (i) (r, 2
m-1

) binary RM 

code, (ii) (r - 1, 2
m-1

) binary RM code. 

                This theorem can be generalised for ternary RM code. So, we have the following 

proposition: 

Proposition 1.For r = 1, 2,   .   .   .   , m - 1, r being any integer, the (r, 3
m
) ternary RM code 

can be split or decomposed into sub-codes: (i) (r, 3
m-1

) ternary RM code, (ii) (r - 1, 3
m-1

) 

ternary RM code, (iii) (r - 2, 3
m-1

) ternary RM code. 

This proposition can be illustrated as in fig. 4:      

 

BLK(1)                   BLK(2)                   BLK(3) 

A: a codeword in ternary (r, 3
m-1

)RM code,  B: a codeword in ternary (r - 1, 3
m-1

)RM code, 

and C: a codeword in ternary (r - 2, 3
m-1

)RM code 

Fig.4.Construction of Ternary (r, 3
m

) Reed-Muller Code 

                So, construction of ternary (r, 3
m
) RM code from sub-codes:  (i) ternary (r, 3

m-1
)RM 

code, (ii) ternary (r - 1, 3
m-1

)RM code, (iii) ternary (r - 2, 3
m-1

)RM code, is like                          

| u | v | u + v + w | construction. Hence ternary RM codes can be interpreted in terms of                        

super-imposition.  
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IV. SIMPLE ITERATED CODES 

                Let [n, k, d] be the given ternary RM code. If a codeword in the [n, k, d] code is 

simply repeated I times, a new code is formed, which will be [n I, k, d I] code. It is called 

simple iterated code (SI). It is as shown in fig.5. as follows: 

 

CSI: a codeword in the I-SI code on the basis of the [n, k, d]code, 

C: a codeword in the [n, k, d]code 

Fig.5.Construction of SI Code 

Here BLK (i) means ith block. The new super-imposed code is written as I-SI code on basis 

of the [n, k, d] code. The I-SI code is the [n I, k, d I]code. 

                Now let I-SI be simple iterated code on basis of the [n, k, d]code, which is ternary 

(r, n = 3
m
) RM code. Let corresponding to the codeword CSI, R be the received codeword. Let 

ei, where i = 1, 2,   .   .   .   , I be error-vectors in the BLK (i). It is assumed that these ei satisfy  

following formulation: 

                             wt.  ei 
I
i=1  < d I / 3, where d is assumed to be a multiple of 3. 

Therefore,        CSI = |C|C|   .   .   .   |C| 

                and     R = |C⊕e1|C⊕e2|   .   .   .   |C⊕eI|  

Then we have following algorithm of decoding for the SI codes: 

Step 1: Let i =1.  

Step 2: Decode the C ⊕ ei as 


iC  of received word R. It can be done by utilising any 

appropriate method. (Because length n of every block may be selected much shorter as 

compared to length n I of original I-SIcode, so it may be decoded easily utilising syndrome 

decoding etc.). 

Step 3: If the error-correction be made in the step 2,  

                Then find out value of Ni using equation: 

                                     Ni =  wt.  C ⊕ ej ⊕


iC  I
j=1                                                          (4.1) 

                 If the error-detection is complete in the step 2,  

                 then go to the step 5.  

Step 4: Do Comparison of  Ni with threshold-value d I / 3. 

                 (i) If Ni < d I / 3, go to step 6. 

                 (ii) If Ni ≥ d I / 3, then go to the step 5. 
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Step 5: Now if i < I, then let i = i + 1 and go to the step 2. 

                 If i = I, then error-detection gets completed.  

Step 6: Now let C = 


iC . Error-correction is completed. 

                  Using this decoding algorithm, the I-SI code on basis of [n, k, d]code can be 

decoded. 

                In the step 2, all blocks of received-word R cannot be erroneously corrected. It 

means either at least one of blocks is successfully corrected or all blocks are error-detected. 

                Now consider former case, i.e. when at least one of blocks is successfully 

corrected. Let 


kC  be correct-version of C. 

                If the total number of errors is < d I / 3,  

                       then we will have: Nk =  wt.  ej < dI/3.I
j=1   

                If the total number of errors = d I / 3,  

                       then  Nk =  wt.  ej = d I/3I
j=1 , where d I is assumed to a multiple of 3. 

                If C ⊕ eh  gets decoded as 


hC  ≠ C, then: 

                                Nh =  wt.  C ⊕ ej ⊕


hC  I
j=1         

                                     ≥  [wt.  C ⊕


hC  − wt. (ej)]I
j=1  

                                     ≥ d I – d I / 3.  

                                     = (2 / 3) d I. 

                                     ≥ d I / 3. 

Therefore,              Nh  ≥  d I / 3. 

                In the latter case, i.e. when all blocks are error-detected, then it is clear that               

error-detection is completed in the step 5. In this latter case, d will be a multiple of 3, i.e. 

when all blocks are error-detected, this happens only if d is a multiple of 3. 

V. SUPER-IMPOSITION AND DECOMPOSITION OF  

TERNARY RM CODES 

                By using Proposition 1., original ternary (r, 3
m
)Reed-Muller code, where                     

1 ≤ r ≤ m - 1, can be split or decomposed into three sub-codes: (i) the ternary (r, 3
m-1

)Reed-

Muller  code, (ii) the ternary (r - 1, 3
m-1

)Reed-Muller code, and (iii) the ternary                               

(r - 2, 3
m-1

)Reed-Muller code. 
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                The ternary (r, 3
m-1

)RM subcode will further be decomposed into three ternary RM 

subcodes: ternary (r, 3
m-2

) Reed-Muller code, ternary (r - 1, 3
m-2

)Reed-Muller code, and  

ternary (r - 2, 3
m-2

) Reed-Muller code; the ternary (r - 1, 3
m-1

) Reed-Muller subcode will 

further be decomposed into three ternary RM subcodes: ternary (r - 1, 3
m-2

)Reed-Muller code, 

ternary (r - 2, 3
m-2

)Reed-Muller code, and  ternary (r - 3, 3
m-2

) Reed-Muller code; the ternary 

(r - 2, 3
m-1

)Reed-Muller subcode will further be decomposed into three ternary RM subcodes: 

ternary (r - 2, 3
m-2

)Reed-Muller code, ternary (r - 3, 3
m-2

)Reed-Muller code, and                     

ternary (r - 4, 3
m-2

)Reed-Muller code. And so on.  

                This operation is repeated until and unless subcodes of the lowest order become 

ternary 0
th
 order RM code.  

Example 1: Consider ternary (r, 3
m
) RM code, in which m = 3 and r = 2 so that 0 ≤ r ≤ m. So, 

this code will be ternary (2, 3
3
) i.e. (2, 27) RM code. Its three ternary RM sub-codes will be 

(r, 3
m-1

), (r - 1, 3
m-1

) (r - 2, 3
m-1

) i.e. (2, 3
3-1

), (2 - 1, 3
3-1

), (2 - 2, 3
3-1

) i.e. (2, 9), (1, 9) (0, 9) 

RM codes. The basis vectors of ternary (2, 9) RM code will be v0 = 222222222,                          

v1= 012012012, v2 = 000111222, v1v2 = 000012021; that of ternary (1, 9) RM code will be               

v0 = 222222222, v1= 012012012, v2 = 000111222; and that of ternary (0, 9) RM code will be 

v0 = 222222222. Linear combinations of these basis-vectors will give all codewords of the 

respective codes. Therefore, these three sub-codes will be:  

(r, 3
m-1

) = (2, 9) = {222222222, 012012012, 000111222, 000012021, 201201201, 222000111, 

222201210, 012120201, 012021000, 000120210, 000000000, 111111111, 120210012, .  .  .}; 

(r - 1, 3
m-1

) = (1, 9) = {222222222, 012012012, 000111222, 201201201, 222000111, 

012120201, 201012120, 000000000, 111111111, 120201012, .   .   .} 

(r - 2, 3
m-1

) = (0, 9) = {222222222, 000000000, 111111111} 

                Let u ∈ (r, 3
m-1

) = (2, 9) be u = 000000000, 

                and v ∈ (r - 1, 3
m-1

) = (1, 9) be v = 111111111, 

                and w ∈ (r - 2, 3
m-1

) = (0, 9) be w = 111111111. 

Therefore, | u | v | u + v + w | = | 000000000 | 111111111|  (000000000 + 11111111 + 

111111111 | = | 000000000 | 111111111 | 222222222 |. All these three blocks are present in 

(r, 3
m-1

) = (2, 9), (r - 1, 3
m-1

) = (1, 9), and (r - 2, 3
m-1

) = (0, 9) sub-codes. So,| u | v | u + v + w | 

= 000000000  111111111222222222. This codeword will belong to (r, 3
m
) = (2, 3

3
) = (2, 27) 

ternary RM code. For this, order will be r = 2, and block-length will be equal to 3
3
 = 27, and 

value of m will be 3, and hence its basis-vectors will be:                                              

v0=222222222222222222222222222,v1=012012012012012012012012012,v2=00011122200

0111222000111222,v3=000000000111111111222222222,v1v2=00001202100001202100001

2021,v1v3=000000000012012012021021021,v2v3=000000000000111222000222111. 

                Also we note that in code (2, 27) = (2, 3
3
), r = 2, m = 3, so for this code, value of k 

will be: k = 1 + 
m
C1 + 

m
C2 +   .   .   .    + 

 m
Cr = 1 + 

3
C1 + 

3
C2 = 1 + 3 + 3 = 7. Hence number 

of codewords in code (r, 3
m
) = (2, 3

3
) will be = 3

k
 = 3

7
 = 2187. Every | u | v | u + v + w |, for 

values u ∈ (r, 3
m-1

), v ∈ (r - 1, 3
m-1

), w ∈ (r - 2, 3
m-1

) will be one of these 2187 codewords of 

the code (r, 3
m
) = (2, 3

3
) = (2, 27). 
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                If decomposition is repeatedly performed on each sub-code of the original ternary 

(r, 3
m

) RM code, and this process is repeated µ times, then this is called µ-decomposition. It 

is as shown in fig 6 as follows:               

 

0-Decomposition 

 

1-Decomposition 

 

2-Decomposition 

Fig.6. Displaying the µ-Decomposition of Ternary (r, 3
m

) RM Code: 

(i)  0-Decomposition, (ii) 1-Decomposition, (iii) 2-Decomposition. 

               This discussion is generalised in the form of theorem as follows:  

Theorem 2. Given µ ∈ {1, 2,   .   .   .   , m – r}, where µ is an integer, the ternary (r, 3
m
) 

Reed-Muller code can be split or decomposed into ternary (r - j, 3
m-µ

) Reed-Muller codes, 

where j = 0, 1,   .   .   .   , r with same minimum distance 3
m-r-µ

, each of which constitutes the 

3
µ
 - code. 

                Therefore, if we take µ = 1, then subcodes will be ternary (r - j, 3
m-µ

) RM codes,          

i. e. ternary (r - j, 3
m-1

) RM codes. Since j = 0, 1,   .   .   .   , r, therefore, the corresponding 

subcodes will be: ternary (r, 3
m-1

) RM subcode, ternary (r - 1, 3
m-1

) RM code,                     

ternary (r - 2, 3
m-1

) RM code,   .   .   .   .   , ternary (0, 3
m-1

) RM code. 

                If we take µ = 2, then subcodes will be ternary (r - j, 3
m-µ

) RM codes, i. e.               

ternary (r - j, 3
m-2

) RM codes. Since j = 0, 1,   .   .   .   , r, therefore, the corresponding 

subcodes will be: ternary (r, 3
m-2

) RM subcode, ternary (r - 1, 3
m-2

) RM code,                       

ternary (r - 2, 3
m-2

) RM code,   .   .   .   , ternary (0, 3
m-2

) RM code. 

                If we take µ = 3, then subcodes will be ternary (r - j, 3
m-µ

) RM codes, i. e.                

ternary (r - j, 3
m-3

) RM codes. Since j = 0, 1,   .   .   .    , r, therefore, the corresponding 

subcodes will be: ternary (r, 3
m-3

) RM subcode, ternary (r - 1, 3
m-3

)RM code,                      

ternary (r-2, 3
m-3

)RM code,  .   .   .    , ternary (0, 3
m-3

) RM code. 

         .            .           .            .          .          .           .          .         . 

         .            .           .            .          .          .           .          .         . 

                Lastly, we take µ = m - r, then subcodes will be ternary (r - j, 3
m-µ

) RM codes, i. e. 

ternary (r - j, 3
r
) RM codes. Since j = 0, 1,  .    .   .   , r, therefore, the corresponding subcodes 
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will be: ternary (r, 3
r
) RM subcode, ternary (r - 1, 3

r
) RM code, ternary (r - 2, 3

r
) RM code,   .   

.   .   , ternary (0, 3
r
) RM code. 

                On the other hand, if we take j = 0, then subcodes will be ternary (r - j, 3
m-µ

) RM 

codes, i. e. ternary (r , 3
m-µ

) RM codes. So, since µ ∈ {1, 2,  .   .   .   , m – r}, therefore, the 

corresponding subcodes will be: ternary (r, 3
m-1

) RM subcode, ternary (r, 3
m-2

) RM code, 

ternary (r, 3
m-3

) RM code,   .   .   .   , ternary (r, 3
r
) RM code. 

                If we take j = 1, then subcodes will be ternary (r - j, 3
m-µ

) RM codes, i. e.                 

ternary (r - 1, 3
m-µ

) RM codes. So, because µ ∈ {1, 2,  .   .   .   , m – r}, therefore, the 

corresponding subcodes will be: ternary (r - 1, 3
m-1

) RM subcode, ternary (r - 1, 3
m-2

) RM 

code, ternary (r - 1, 3
m-3

) RM code,   .   .   .   , ternary (r - 1, 3
r
) RM code. 

                If we take j = 2, then subcodes will be ternary (r - j, 3
m-µ

) RM codes, i. e.              

ternary (r - 2, 3
m-µ

) RM codes. So, because µ ∈ {1, 2,   .   .   .   , m – r}, therefore, the 

corresponding subcodes will be: ternary (r - 2, 3
m-1

) RM subcode, ternary (r - 2, 3
m-2

) RM 

code, ternary (r - 2, 3
m-3

)RM code,   .   .   .    , ternary (r - 2, 3
r
) RM code.  

         .            .           .            .          .          .           .          .         . 

         .            .           .            .          .          .           .          .         . 

                Lastly, if we take j = r, then subcodes will be ternary (r - j, 3
m-µ

) RM codes, i. e. 

ternary (0, 3
m-µ

) RM codes. So, because µ ∈ {1, 2,   .   .   .   , m – r}, therefore, the 

corresponding subcodes will be: ternary (0, 3
m-1

) RM subcode, ternary (0, 3
m-2

) RM code, 

ternary (0, 3
m-3

) RM code,   .   .   .   , ternary (0, 3
r
) RM code.  

Example 2:                  

                Consider codeword in original ternary (r, 3
m
) Reed-Muller code as shown below: 

 

Fig.7. A Codeword in Original Ternary (r, 3
m

)RM Code 

                Consider three equal blocks of the above codeword as under:                                           

 

Fig.8.Three Equal Blocks of Codeword in Original Ternary(r,3
m

) RM Code 

To obtain B1,  Add |C1| and |C2| to |C3|. 

Therefore:  B1 = |C1 ⊕ C2⊕ C3|.   

 

Fig.9. Obtaining B1 
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To obtain B2’s:  

Add above B1 to |C3| to get |C3
/
|, so |C3

/
| = |C3| ⊕ B1,  

and |C1| gives |C1
/
| as such, i.e. |C1

/
| = |C1|,  

and |C2| gives |C2
/
| as such,  i.e. |C2

/
| = |C2|. 

So, the fig. is as follows: 

 

Fig.10. Obtaining B2’s 

Therefore, first B2 = |C1
/
|, second B2 = |C2

/
|, third B2 = |C3

/
|. 

Hence, all A1’s  are obtained as follows: 

                 first A1 = |C1
/
|, second A1 = |C2

/
|, third A1 = |C3

/
|. 

                Here, first A1 represents a codeword in sub-code  (r, 3
m-1

), second A1 represents a 

codeword in sub-code (r - 1, 3
m-1

),  third A1 represents a codeword in sub-code (r - 2, 3
m-1

), 

where  (r, 3
m-1

), and (r - 1, 3
m-1

), and (r - 2, 3
m-1

) are the sub-codes of the original                

ternary (r, 3
m
) RM code. 

                Further, consider three equal blocks of each of A1. So, we have:  

 

Fig.11. Considering Three Equal Blocks of Each of the A1’s 

To obtain B3: Add |D1|D2|D3| and |D4|D5|D6| to |D7|D8|D9| to get B3. 

Therefore:  B3 = |D1 ⊕ D4⊕ D7| D2 ⊕ D5⊕ D8| D3 ⊕ D6⊕ D9|. 

 

Fig.12. Obtaining B3 

To obtain B4’s:  

Firstly: Add above B3 to |D7|D8|D9| to get |D7 
/
| D8 

/
| D9 

/
|, 

so   |D7 
/
| D8 

/
| D9 

/
| = |D7|D8|D9| ⊕B3,   

and  |D1|D2|D3|  gives  |D1 
/
| D2 

/
| D3 

/
|  as such,  

i.e.  |D1 
/
| D2 

/
| D3 

/
|   = |D1|D2|D3|,   

and  |D4|D5|D6|  gives  |D4 
/
| D5

/
| D6 

/
|  as such,  
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i.e.  |D4 
/
| D5

/
| D6 

/
|  = |D4|D5|D6|.    

Secondly: Add |D1
 /
| and |D2 

/
| to |D3 

/
| to get first B4, 

            i.e. first  B4 =  |D1
 /
|  ⊕ |D2

 /
|  ⊕ |D3

 /
|, 

Add |D4
 /
| and |D5 

/
| to |D6 

/
| to get second B4, 

            i.e. second  B4 =  |D4
 /
|  ⊕ |D5

 /
|  ⊕ |D6

 /
|, 

Add |D7
 /
| and |D8 

/
| to |D9 

/
| to get third B4, 

            i.e. third  B4 =  |D7
 /
|  ⊕ |D8

 /
|  ⊕ |D9

 /
|. 

Therefore, all the A2’s are obtained as follows: 

First A2 = |D1 
/
| , Second A2 = |D2 

/
|, Third A2= |D3

(1)
 ⊕  first B4|   

Fourth A2 = |D4 
/
|, Fifth A2 = |D5 

/
|, Sixth A2 = |D6 

/
 ⊕ second B4|  

Seventh A2 = |D7 
/
|, Eighth A2 = |D8 

/
|, Ninth A2 = |D9 

/⊕third B4|  

                All this is shown in fig.13 as follows: 

       

 

Fig.13. Obtaining B4’s 

                Here, first A2 represents a codeword in sub-code (r, 3
m-2

), second A2 represents a 

codeword in sub-code (r - 1, 3
m-2

), third A2 represents a codeword in sub-code (r - 2, 3
m-2

), 

where  (r, 3
m-2

), (r - 1, 3
m-2

), and (r - 2, 3
m-2

) are the sub-codes of sub-code (r, 3
m-1

). Fourth A2 

represents a codeword in sub-code (r - 1, 3
m-2

), fifth A2 represents a codeword in sub-code          

(r - 2, 3
m-2

), sixth A2 represents a codeword in sub-code (r - 3, 3
m-2

), where  (r - 1, 3
m-2

), and      

(r - 2, 3
m-2

), and (r - 3, 3
m-2

) are the sub-codes of sub-code (r - 1, 3
m-1

). Seventh A2 represents 

a codeword in sub-code (r - 2, 3
m-2

), eighth A2 represents a codeword in sub-code (r - 3, 3
m-2

), 

ninth A2 represents a codeword in sub-code (r - 4, 3
m-2

), where  (r - 2, 3
m-2

), and (r -3, 3
m-2

), 

and (r- 4, 3
m-2

) are the sub-codes of  sub-code (r - 2, 3
m-1

). 

                Further, consider three equal blocks of each of A2’s. So, we have: 

 

Fig.14.Considering Three Equal Blocks of Each of the A2’s 

To obtain B5’s :   

Add |E1|E2|E3| and |E4|E5|E6| to |E7|E8|E9| to get first B5. 

Add |E10|E11|E12| and |E13|E14|E15| to |E16|E17|E18| to get second B5. 

Add |E19|E20|E21| and |E22|E23|E24| to |E25|E26|E27| to get third B 
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Therefore:   

First B5 = |E1 ⊕ E4 ⊕ E7| E2 ⊕ E5 ⊕ E8| E3 ⊕ E6 ⊕ E9|. 

Second B5 = |E10 ⊕ E13 ⊕ E16| E11 ⊕ E14 ⊕ E17| E12 ⊕ E15 ⊕ E18|. 

Third B5 = |E19 ⊕ E22 ⊕ E25| E20 ⊕ E23 ⊕ E26| E21 ⊕ E24 ⊕ E27|. 

 

Fig.15.Obtaining B5’s 

To obtain B6’s:  

Firstly:  

Add above first B5 to |E7|E8|E9| to get |E7 
/
| E8 

/
| E9 

/
|, 

so   |E7 
/
| E8 

/
| E9 

/
| = |E7|E8|E9| ⊕ first B5,   

and  |E1|E2|E3|  gives  |E1 
/
| E2 

/
| E3 

/
|  as such,  

i.e.  |E1 
/
| E2 

/
| E3 

/
|   = |E1|E2|E3|,   

and  |E4|E5|E6|  gives  |E4 
/
| E5

/
| E6 

/
|  as such,  

i.e.  |E4 
/
| E5

/
| E6 

/
|  = |E4|E5|E6|.  

Add above second B5 to |E16|E17|E18| to get |E16 
/
| E17 

/
| E18 

/
|, 

so   |E16 
/
| E17 

/
| E18 

/
| = |E16|E17|E18| ⊕ second B5,   

and  |E10|E11|E12|  gives  |E10 
/
| E11 

/
| E12 

/
|  as such,  

i.e.  |E10 
/
| E11 

/
| E12 

/
|  = |E10|E11|E12|,   

and  |E13|E14|E15|  gives  |E13 
/
| E14

/
| E15 

/
|  as such,  

i.e. |E13 
/
| E14

/
| E15 

/
|  = |E13|E14|E15|. 

Add above third B5 to |E25|E26|E27| to get |E25 
/
| E26 

/
| E27 

/
|, 

so |E25 
/
| E26 

/
| E27 

/
| = |E25|E26|E27| ⊕ third B5,   

and |E19|E20|E21|  gives  |E19 
/
| E20 

/
| E21 

/
|  as such,  

i.e. |E19 
/
| E20 

/
| E21 

/
| = |E19|E20|E21|,   

and |E22|E23|E24|  gives  |E22 
/
| E23

/
| E24 

/
|  as such,  

i.e. |E22 
/
| E23

/
| E24 

/
| = |E22|E23|E24|.             

Secondly:  

Add |E1
 /
| and |E2 

/
| to |E3 

/
| to get first B6,  
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i.e. first  B6 =  |E1
 /
|  ⊕ |E2

 /
|  ⊕ |E3

 /
|, 

Add |E4
 /
| and |E5 

/
| to |E6 

/
| to get second B6,  

i.e. second  B6 =  |E4
 /
|  ⊕ |E5

 /
|  ⊕ |E6

 /
|, 

Add |E7
 /
| and |E8 

/
| to |E9 

/
| to get third B6,  

i.e. third  B6 =  |E7
 /
|  ⊕ |E8

 /
|  ⊕ |E9

 /
|. 

Add |E10
 /
| and |E11 

/
| to |E12 

/
| to get fourth B6,  

i.e. fourth  B6 =  |E10
 /
| ⊕ |E11

 /
| ⊕ |E12

 /
|, 

Add  |E13
 /
| and |E14 

/
| to |E15 

/
| to get fifth B6,  

i.e. fifth  B6 =  |E13
 /
|  ⊕ |E14

 /
|  ⊕ |E15

 /
|, 

Add |E16
 /
| and |E17 

/
| to |E18 

/
| to get sixth B6,  

i.e. sixth  B6 =  |E16
 /
|  ⊕ |E17

 /
|  ⊕ |E18

 /
|, 

Add |E19
 /
| and |E20 

/
| to |E21 

/
| to get seventh B6,  

i.e. seventh  B6 = |E19
 /
|⊕|E20

 /
|⊕|E21

 /
|, 

Add |E22
 /
| and |E23 

/
| to |E24 

/
| to get eighth B6,  

i.e. eighth B6 = |E22
 /
| ⊕ |E23

 /
|  ⊕ |E24

 /
|, 

Add |E25
 /
| and |E26 

/
| to |E27 

/
| to get ninth B6,  

i.e. ninth  B6 =  |E25
 /
|  ⊕ |E26

 /
|  ⊕ |E27

 /
|. 

 

Fig.16.Obtaining B6’s 

Therefore, all the A3’s are obtained as follows: 

First  A3 = |E1 
/
|, Second A3 = |E2 

/
|, Third A3 =  |E3

(1)
 ⊕  first B6|   

Fourth A3 = |E4 
/
|, Fifth A3 = |E5 

/
|, Sixth A3 = |E6 

/
 ⊕  second B6|  

Seventh A3 = |E7 
/
|, Eighth A3 = |E8 

/
|, Ninth A3 = |E9 

/⊕ third  B6|  

Tenth A3 = |E10 
/
|, Eleventh A3 = |E11 

/
|, Twelfth A3=|E12

/⊕ fourth B6|   

Thirteenth A3 = |E13 
/
|, Fourteenth A3 = |E14 

/
|, Fifteenth  A3 = |E15 

/⊕ fifth B6|  

Sixteenth A3 = |E16 
/
|, Seventeenth A3 = |E17 

/
|, Eighteenth A3 = |E18 

/⊕ sixth  B6|  

Nineteenth A3 = |E19 
/
|, Twentieth A3 = |E20 

/
|, Twenty-first A3 = |E21

/⊕ seventh B6|   

Twenty-second A3 = |E22 
/
|, Twenty-third A3 = |E23 

/
|, Twenty-fourth A3 = |E24 

/⊕ eighth B6|  
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Twenty-fifth A3 = |E25 
/
|, Twenty-sixth A3 = |E26 

/
|, Twenty-seventh A3 = |E27 

/⊕ ninth B6| 

  

                Here, first A3 represents a codeword in sub-code (r, 3
m-3

), second A3 represents a 

codeword in sub-code (r - 1, 3
m-3

),  third A3 represents a codeword in sub-code (r - 2, 3
m-3

);         

(r, 3
m-3

), (r - 1, 3
m-3

), (r - 2, 3
m-3

) being the sub-codes of sub-code (r, 3
m-2

). Fourth A3 

represents a codeword in sub-code (r - 1, 3
m-3

), fifth A2 represents a codeword in sub-code       

(r - 2, 3
m-3

),  sixth  A3 represents a codeword in sub-code (r - 3, 3
m-3

), where  (r - 1, 3
m-3

),        

(r - 2, 3
m-3

), (r - 3, 3
m-3

) are the sub-codes of sub-code (r - 1, 3
m-2

). Seventh A3 represents a 

codeword in sub-code (r - 2, 3
m-3

), eighth A3 represents a codeword in sub-code (r - 3, 3
m-3

),  

ninth A3 represents a codeword in sub-code (r - 4, 3
m-3

), where  (r - 2, 3
m-3

), (r - 3, 3
m-3

),              

(r - 4, 3
m-3

) are the sub-codes of sub-code (r-2, 3
m-2

). Tenth A3 represents a codeword in          

sub-code (r - 1, 3
m-3

), eleventh A3 represents a codeword in sub-code (r - 2, 3
m-3

),  twelfth A3 

represents a codeword in sub-code (r - 3, 3
m-3

), where  (r - 1, 3
m-3

), (r - 2, 3
m-3

), (r - 3, 3
m-3

) 

are the sub-codes of sub-code (r - 1, 3
m-2

). Thirteenth A3 represents a codeword in sub-code    

(r - 2, 3
m-3

), fourteenth A2 represents a codeword in sub-code (r - 3, 3
m-3

),  fifteenth  A3 

represents a codeword in sub-code (r - 4, 3
m-3

), where (r - 2, 3
m-3

), (r - 3, 3
m-3

), (r - 4, 3
m-3

) are 

the sub-codes of sub-code  (r - 2, 3
m-2

). Sixteenth A3 represents a codeword in sub-code             

(r - 3, 3
m-3

), seventeenth A3 represents a codeword in sub-code (r - 4, 3
m-3

), eighteenth A3 

represents a codeword in sub-code (r-5, 3
m-3

), where  (r - 3, 3
m-3

), and (r - 4, 3
m-3

), and            

(r - 5, 3
m-3

) are the sub-codes of sub-code (r - 3, 3
m-2

). Nineteenth A3 represents a codeword in 

sub-code (r - 2, 3
m-3

), twentieth A3 represents a codeword in sub-code  (r - 3, 3
m-3

),           

twenty-first A3 represents a codeword in sub-code (r - 4, 3
m-3

), where  (r - 2, 3
m-3

),                        

(r - 3, 3
m-3

),  (r - 4, 3
m-3

) are the sub-codes of sub-code (r - 2, 3
m-2

). Twenty-second A3 

represents a codeword in sub-code (r - 3, 3
m-3

), twenty-third A2 represents a codeword in          

sub-code (r - 4, 3
m-3

),  twenty-fourth  A3 represents a codeword in sub-code (r - 5, 3
m-3

), 

where  (r - 3, 3
m-3

), and (r - 4, 3
m-3

), and (r - 5, 3
m-3

) are the sub-codes of sub-code (r - 3, 3
m-2

). 

Twenty-fifth A3 represents a codeword in sub-code (r - 4, 3
m-3

), twenty-sixth A3 represents a 

codeword in sub-code (r - 5, 3
m-3

), twenty-seventh A3 represents a codeword in sub-code           

(r - 6, 3
m-3

), where  (r - 4, 3
m-3

), and (r - 5, 3
m-3

), and (r - 6, 3
m-3

) are the sub-codes of sub-code 

(r - 4, 3
m-2

). And so on. 

               So, original (r, 3
m
) Ternary RM code is decomposed into sub-codes of lower orders 

which are also Ternary RM codes. In a reversal way, it can be said that the (r, 3
m

) Ternary 

RM code is obtained from Ternary RM codes of lower orders. One more thing is clear, which 

is that the Ternary RM codes of lower orders and the (r, 3
m
) Ternary RM code, are all SI 

codes. Hence all these Ternary RM codes can be decoded with the help of decoding 

algorithm for SI codes.  

           The direct-sum construction | u | v | means set of all vectors of the type | u | v |, u ∈ C1 

and v ∈ C2, C1, C2 being [n1, M1, d1],          and [n2, M2, d2] codes respectively, resulting in a 

new code [n1 + n2, M1 + M2, d = min.{d1, d2}]. Then we have | u | u + v | construction, which 

means set of all vectors of the type | u | u + v |, u ∈ C1 and v ∈ C2, C1, C2 being [n, M1, d1] 

and [n, M2, d2] codes respectively, resulting in a new code [2n, M1 + M2, d = min.{2d1, d2}]. 

As compared to direct-sum construction | u | v |, the | u | u + v | construction gives us a new 

code of increased block-length, and minimum distance may also be more. We have used                 

| u | u + v + w | construction, u ∈ C1, v ∈ C2, and w ∈ C3, which gives us a new code of 

further increased block-length, and minimum distance may also be furthermore, new code 

being [3n, M1 + M2 + M3, d = min.{2d1, 2d2, d2}], where code  C1 is [n, M1, d1] code, code C2 

is [n, M2, d2] code, and code C3 is [n, M3, d3] code.      
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                Simple Iterated (SI) code is defined as a new code which is formed when a 

codeword u in given code C1 is simply repeated, that is, it is simply | u | u | u | . . . | u |. If a 

codeword u is repeated two times, then this construction will become as | u | u | construction. 

It leads to SI code. Now if in | u | u | construction, we replace second u by codeword v 

belonging to another code C2, then it becomes | u | v | construction. It is a new form of SI 

code. Similarly, if in | u | v | construction, the second codeword v belonging to code C2, is 

replaced by u + v, then it becomes | u | u + v | construction. It is still another new form of SI 

code. Similarly, | u | v | u + v + w | construction, u ∈ code C1, v ∈ code C2, and w ∈ code C3, 

is still another new form of SI code. In all these constructions: | u | u |, and | u | v |, and             

| u | u + v |, and | u | v | u + v + w |, the common feature is that the codewords are placed           

side-ways to form codewords of a new code, and this feature is the content of SI codes. 

Hence all these constructions: | u | u |, and | u | v |, and | u | u + v |, and | u | v | u + v + w |, give 

rise to the SI codes on basis of code C1, C1 and C2, C1 and C1⊕C2, C1 and C2 and 

C1⊕C2⊕C3 respectively.   

                In these new codes given by constructions: | u | u |, | u | v |, | u | u + v |, and                         

| u | v | u + v + w |; u, v, u + v, u + v + w, etc. denote the blocks of codeword of the new code. 

Hence every codeword of the new code generated by these constructions is composed of 

blocks, these being of equal length. So, these new codes can be decoded by algorithm which 

is there for the SI codes.       

VI. GENERAL DECODING ALGORITHM  

FOR THE TERNARY RM CODES 

                So, decoding algorithm (general) for Ternary RM code (r, 3
m
) and sub-codes of 

lower orders will be as follows:  

Step 1: Get the Ternary RM code (r, 3
m
) and sub-codes of lower orders in SI form.  

Step 2: Decode all these SI codes with the help of algorithm for SI codes. 

VII. CONCLUSION                 

              Ternary RM codes are interpreted in terms of super-imposition. A new algorithm of 

decoding for class of Simple Iterated codes is proposed. It plays central role in the decoding 

algorithm for the Ternary RM codes. For same value of m, the (r, n = 3
m
) ternary RM code 

will have larger block-length n, as compared to block-length n of  (r, n = 2
m
) binary RM code. 

The larger value of length n will help to strengthen the role of safeguarding the transmission 

of the message. Also we shall have more number of codewords in (r, n = 3
m
) ternary RM 

code, i.e. 3
k
 as compared to 2

k
 in (r, n = 3

m
) binary RM code. This will enhance the utility of 

ternary RM code. The detection and correction capability of a code depends upon the value of 

d, it is directly proportional to the value of d. Hence larger value of minimum distance                

d = 3
m-r

 of ternary RM code as compared to value of d = 2
m-r

 of binary RM code, will 

increase the detection and correction capability of the ternary RM code. So, as compared to 

binary RM code, ternary RM code has stronger role of securing the transmission of the 

messages, has enhanced utility, and has increased detection and correcting capability. 
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