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Abstract 

Rhotrix theory deals with array of numbers in rhomboid mathematical form. The graphical 

representation of rhotrix of dimension n is known as rhomtree. In this paper the degree based 

indices of rhomtrees and line graph of rhomtrees are computed. 

Keywords: first Zagreb index, forgotten index, hyper Zagreb index, irregularity index, Rhotrix, 
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1. Introduction 

 Let G (V, E)be a simple undirected graph. In the field of chemical graph theory and in 

mathematical chemistry, a topological index, also known as a connectivity index, is a type of a 

molecular descriptor that is calculated based on the distance between the atoms of molecular 

graph. Topological indices [3] are used for example in the development of quantitative structure-

activity relationship (QSAR) and quantitative structure - property relationship (QSPR) in which 

the biological activity or other properties of molecules are correlated with their chemical 

structure. Among different topological indices, degree-based topological indices are most studied 

and have some important applications in chemical graph theory [8]. In [7] it was reported that the 

first and second Zagreb indices are useful in anti-inflammatory activities study of certain 

chemicals. In the same paper the F-index was introduced which is the sum of the cubes of the 

vertex degrees. In [4, 6], the authors reinvestigated the index and named it forgotten topological 

index or F-index. The F-index is defined as F(G)=    






 

)(

22

GEuv

vdud GG
. In [4] this index is 

studied for different graph operations and in [5] the co-index version is introduced. Albetson in 

[2] defined another degree based topological index called irregularity of G as  

Irr (G) =    



)(GEuv

GG
vu dd . The first and second Zagreb indices of a graph are denoted by 

𝑀1(𝐺) and𝑀2(𝐺) and are, respectively, defined asM1(𝐺)=    ]
)(

[



GEuv

GG
vu dd  and 

M2 (G) =     
 )(GEuv

GG
vu dd . These indices are one of the oldest and extensively studied 
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topological indices in both mathematical and chemical literature; for details interested readers are 

referred to [10]. Shirdel et al. [13] introduced a new version of Zagreb index and named as 

hyper-Zagreb index, which is defined as HM (G)=      
 )(

2

GEuv
GG vdud . 

Construction of Rhomtree 

The structure of n-dimensional rhotrix is as follows: 
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where a11, a12, … att denote the major entries and c11, c12, … ct-1ct-1 in Rn denote the minor entries 

of the rhotrix by sani [11,12]. A Rhotrix would always have an odd dimension. Any n-

dimensional Rhotrix Rn, will have Rn = 
1

2
(𝑛2 + 1) entries by Ajibade [1] and 𝑛 ∈ 2𝑍+ + 1. A 

heart of a Rhotrix denoted by h(R) is defined as the element at the perpendicular intersection of 

the two diagonals of a Rhotrix. Let 𝑅  𝑛  be a set consisting all real rhotrices of dimension 𝑛 ∈
2𝑍+ + 1 and let R(n) be any rhotrix in 𝑅  𝑛 . Then the graphical representation of rhotrix R(n) is 

a rhomtree T(m), with m =  
1

2
(𝑛2 + 1) number of vertices and 

1

2
(𝑛2 − 1)  number of edges, 

having four components of binary branches and each component is bridged to the root vertex by 

one incident edge. 

If n=7, then 𝑅  7  is a set consisting of all real rhotrices of dimension three and let R(7) be any 

element in  𝑅  7  given by  

                                  a
aca

acaca
acacaca

acaca
aca

a

R
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14132322323114
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7
  

with r13 = h(R) is the heart of the rhotrix. If we take each entry in R(7) as a node point and 

connecting all of the entries as network of twenty five vertices using a particular pattern or style 

for the construction, in such a way that the heart vertex will serve as the root of the tree while the 

non heart vertices will serve as branches, then a rhomtree T(25) corresponding to the rhotrix R(7) 

is obtained and shown in Fig.1.  
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                                                 fig.1 Rhomtree T(25) 

 

The line graph of [T (25)] is given in Fig.2 

 

 
 

fig.2 L(T(25)) 

Let G=T(m) be the rhomtree of order m=
1

2
(𝑛2 + 1). The partitions of the vertex set V (G) are 

denoted by Vi (G), where vVi(G) if d(v)= i. Thus the following partitions of the vertex set are 

obtained. 

V1= {vV(G): d(v)=1},V3= {vV(G):d(v)=3} and V4= {vV(G):d(v)=4} 
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From the structure of rhomtree, the cardinality of V1, V3 and V4 are given below: 

V1= 
1

4
 (n

2
+7), V3=

1

4
 (n

2
-9) andV4= 1 

The edge set of G can also be divided into three partitions based on the sum of degrees of the end 

vertices and it is denoted by 𝐸j so that if 𝑒 = 𝑢v ∈𝐸j then d (𝑢) + d(v) = 𝑗 for (G) ≤ j ≤ (G). 

Thus the edge set of G is the union of E4, E6 and E7. The edge sets E4, E6 and E7, which are 

subsets of E (G) are as follows: 

E4={e=uvE(G):d(u)=1, d(v)=3}, E6={e=uvE(G):d(u)=3, d(v)=3} and  

E7= {e=uvE(G): d(u)=3, d(v)=4}. 

In this case from direct calculations, the cardinality of E4, E6 and E7 are respectively 
1

4
 (n

2
+7), 

1

4
 (n

2
-25) and 4. The partitions of the vertex set V (G) and edge set E (G) are given in Table 1 and 

Table 2 respectively. 

 

Vertex 

partition 

 

 

V1 

 

V3 

 

V4 

Cardinality 1

4
 (n

2
+7) 

1

4
 (n

2
-9) 1 

 

Table1: The vertex partition of Rhomtree T (m) 

 

 

Edge 

partition 

 

 

E4 

 

E6 

 

E7 

Cardinality 1

4
 (n

2
+7) 

1

4
 (n

2
-25) 4 

 

Table 2: The edge partition of Rhomtree T (m) 

 

Similarly the vertex set and edge set of line graph of rhomtree can be partitioned. The partitions 

of the vertex set of L (G) are given by 

V2
*
= {vV(L(G)): d(v)=2},V4

*
= {vV(L(G)):d(v)=4} and V5

*
= {vV(L(G)):d(v)=5}.  

 

 

Vertex 

Partition of L(G) 

 

 

   V2
*
 

 

V4
*
 

 

V5
*
 

Cardinality 1

4
 (n

2
+7) 

1

4
 (n

2
-25) 4 

Table 3: The Vertex partition of L (T (m)) 

 

The partitions of the edge set of L(G) are given by  

E4
*
={e=uvE(L(G)): d(u)=2 , d(v)=2}, E6

*
={e=uvE(L(G)) :d(u)=2, d(v)=4} and  

E7
*
={e=uvE(G): d(u)=2, d(v)=5}, E8

*
={e=uvE(G): d(u)=4, d(v)=4} 

E9
*
={e=uvE(G): d(u)=4, d(v)=5}, E10

*
={e=uvE(G): d(u)=5, d(v)=5} 
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Edge partition 

of L(G) 

 

 

E4
*
 

 

E6
*
 

 

E7
*
 

 

E8
*
 

 

E9
*
 

 

E10
*
 

Cardinality n-1 1

2
 (n

2
-4n+7) 2 1

4
(n

2
+4n-69) 6 6 

 

Table 4: The Edge partition of L (T (m)) 

 

2. F-index, irregularity index of T(m) and L(T(m)) 

Theorem 2.1 The F- index of Rhomtree T (m) is given by F (G)=  57
2

1 2 n  

Proof F index of rhomtree T (m) is  

 
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1 2 n  

Theorem 2.2 The F index of Line graph of Rhomtree L (T (m)) is given by  

F (L (T(m))) = 18n
2
+114 

Proof   The F-index of Line graph of T (m) is 
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*
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*
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*
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*
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*
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*
4 EEEEEE   

             =             50641632694
4

1
)29(22074

2

1
81

22
 nnn nn = 18n

2
+114.            

Theorem 2.3 The third Zagreb index or irregularity index of Rhomtree T (m) is given by 

 iir (T(m))=  15
2

1 2 n  

Proof The irr-index of T (m) is  
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


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Theorem 2.4 The third Zagreb index or irregularity index of Line graph of Rhomtree L (T (m)) 

is given by iir (L (T(m)))= n
2
-4n+19 

Proof The irr-index of Line graph of T (m) is  
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3. First, Second Zagreb index and hyper Zagreb index of Rhomtree and Line 

graph of Rhomtree 

Theorem 3.1 The First Zagreb index of Rhomtree T (m) is given by M1 (T (m)) =  1
2

5 2 n  

Proof The M1-index of T (m) is  
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Theorem 3.2 The First Zagreb index of Line graph of Rhomtree L (T (m)) is given by  

M1 (L (T(m)))= 5n
2
+7 

Proof The M1-index of Line graph of T (m) is  

M1 (𝐺) =    ]
)(
[




GEuv
vdG

udG
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Theorem 3.3 The Second Zagreb index of Rhomtree T (m) is given by M2 (T(m)) =  13 2 n  

Proof The M2-index of T (m) is  
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Theorem 3.4 The Second Zagreb index of Line graph of Rhomtree L(T(m)) is given by  
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Proof The M2-index of line graph of T(m) is      
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Theorem 3.5 The HM index of Rhomtree T(m) is given by HM(T(m))= 13 12 n  

Proof The HM-index of T(m) is  
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Theorem 3.6 The HM index of Line graph of Rhomtree L (T(m)) is given by  

HM (L(T(m)))= 34n
2
+8n+190 

Proof The HM-index of line graph of T (m) is  
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= 34n

2
+8n+190 

Conclusion 

  The molecular name for T(25) is 4,4- Bis-(1-isopropyl-2-methyl-propyl)-2,3,5,6-tetramethyl-

heptane and that of T(41) is 4-(1-Isopropyl-2-methyl-propyl)-5-[1-(1-isopropyl-2-methyl-

propyl)-2,3-dimethyl-butyl]-2,3,6,7,8-pentamethyl-5-(1,2,3-trimethyl-butyl)-nonane. In chemical 

graph theory, topological indices provide an important tool to quantify the molecular structure 

and it is found that there is a strong correlation between the properties of chemical compounds 

and their molecular structure. Among different topological indices, degree-based 

topological indices are most studied and have some important applications. In this study, degree-

based topological indices are calculated for rhomtrees and line graph of rhomtrees. 
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