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Abstract 

The main aim of this paper is to introduce new types of open sets namely 
q open sets and q  open sets in 

quad topological spaces along with their several properties and characterization .As application to 
q open sets 

and q  open sets we introduce 
q continuous  functions , q continuous functions and  obtainsome of 

their basic properties. 
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Introduction 
In 1965 Njastad [8 ] introduced generalization of open set in topological space called pre semi open sets (
  open sets). In 1990, M. Jelic [ 3] introduced the concept of  open sets in bitopological spaces. The 
concept of bitopological spaces was introduced by J .C. Kelly [4]. In 1986, D. Andrijevic [1] was introduced 
semi-pre open sets ( open sets) in topological spaces. F.H. Khedr, S.M. Al-Areefi and T. Noiri [ 5] 

generalized the notion of semi pre open sets to bitoplogical spaces and semi pre continuity in 
bitopological spaces. Tri topological space is a generalization of   bitopological space.The study of tri-
topological space was first initiated by Martin M. Kovar [6 ]. S. Palaniammal [9 ] studied tri topological 
space. N. F.  Hameed  and Moh. Yahya Abid [2] defined   123 open set in tri topological space.we [10] 

introduced T open set in tri topological space. We [11 ] introduce T open set in tri topological space. 

D.V. Mukundan [7  ] introduced the concept of quad topology (4-tuple topology) and defined new types 
of open (closed) sets. we [ 12 ] introduce semi open set and pre open set in quad topological space. The 
purpose of the present paper is to introduce q and q open sets and q  and q continuity and their 

fundamental properties in quad topological space. 
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1. Preliminaries 
 
Definition 1.1[8]: A subset A of a topological space ( , )X   is called pre-semi open set ( open sets) if 

int( )(int )A cl A .The complement of pre semi open set is called pre-semi closed set. The class of all pre-

semi open sets of X  is denoted by ( , )PSO X  . 

Definition 1.2[ 1]: A subset A of a topological space ( , )X   is called semi-pre open set (  open sets) if 

(int( ))A cl clA .The complement of semi-pre open set is called semi-pre closed set. The class of all semi 

pre open sets of X  is denoted by ( , )SPO X  . 

Definition 1.3[10]:  Let 
1 2 3( , , , )X T T T be a tri topological space. A subset A  of X  is called 

T open in 

X , if int intA ps psclps A . The complement of 
T open set is called 

T closed set. The collection of all 

T open sets of X is denoted by 1 2 3( , , , )PSO X T T T . 

Definition 1.4[11]: Let 1 2 3( , , , )X T T T be a tri topological space. A subset A  of X  is called T open in 

X , if intA spclsp spclA . The complement of T open set is called T closed set. The collection of all 

T open sets of X is denoted by 1 2 3( , , , )SPO X T T T . 

Definition 1.5 [ 7] :Let X be a nonempty set and 1 2 3, ,T T T  and 3T are general topologies on X.Then a 

subset A of space X  is said to be quad-open(q-open) set if   𝐴 ⊂ 𝑇1 ∪ 𝑇2 ∪ 𝑇3 ∪ 𝑇4 and its complement is 

said to be q-closed and set X with four topologies called quad topological spaces 1 2 3 4( , , , , )X T T T T  .q-open 

sets satisfy all the axioms of topology. 
 
2. 

q  
open set in quad  topological space  

 

Definition 2.1:  Let 1 2 3 4( , , , , )X T T T T be a quad topological space. A subset A  of X  is called 
q open in 

X , if int intq q q q q qA p s p s clp s A . The complement of q open set is called q closed set. The collection 

of all 
q open sets of X is denoted by

1 2 3( , , , )q qp s O X T T T . 

Example 2.2 :Let { , , , }X a b c d , 1 { , ,{ }}T X a , 2 { , ,{ , , }}T X a b c  , 3 { , ,{ , , }}T X b c d ,

4 { , ,{ , }}T X b c
 

q- open sets in quad topological spaces are union of all four topologies. 

q  
open set of X  is denoted by ( ) { , ,{ },{ , , },{ , , },{ , }}q qp s O X X a a b c b c d b c . 

Let  { , , }A a b c ; 

 

 
{ , , }A a b c  is q open. 

int int{ , , } int { , , }

int

q q q q q q q q q q

q q

p s p s clp s a b c p s p s cl a b c

p s X

X






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Definition 2.3: Let 
1 2 3 4( , , , , )X T T T T be a quad topological space. Let A X . An element x A  is called 

q interior point of A , if   there exist a
q open set U such that x U A  . The set of all 

q  interior 

points of A  is called the
q interior of A  and is denoted by int( )q qp s A . 

Theorem 2.4: Let A X be a quad topological space. int( )q qp s A is equal to the union of all 
q open sets 

contained in A . 
Note 2.5: 1. int( )q qp s A A . 

                2. int( )q qp s A is
q open sets. 

Theorem 2.6: int( )q qp s A  is the largest 
q open sets contained in A . 

Theorem 2.7: A  is 
q open if and only if int( )q qA p s A  

Theorem 2.8: int( ) int intq q q q q qp s A B p s A p s B   . 

Definition 2.9: Let 1 2 3 4( , , , , )X T T T T be a quad topological space. Let A X . The intersection of all 
q

closed sets containing A is called a 
q closure of A and is denoted as ( )q qp s cl A . 

Note 2.10 : Since intersection of 
q closed sets is 

q closed set, ( )q qp s cl A  is a 
q  closed set. 

Note 2.11: ( )q qp s cl A  is the smallest 
q closed set containing A . 

Theorem 2.12: A  is 
q closed set if and only if ( )q qA p s cl A . 

Theorem 2.13: Let A  and B be subsets of 1 2 3 4( , , , , )X T T T T and x X  

a) If A B , then ( ) ( )q q q qp s cl A p s cl B . 

b) ( )q qx p s cl A if and only if A U    for every 
q open set U containing x . 

Theorem 2.14: Let A be a subsets of 1 2 3 4( , , , , )X T T T T , if there exist an 
q open set U such that 

( )q qA U p s cl A  , then A  is 
q open. 

Theorem 2.15: In a quad topological space 1 2 3 4( , , , , )X T T T T  , the union of any two 
q open sets is always 

an 
q open set. 

Proof: Let A  and B be any two 
q open sets in X . 

 Now      int intq q q q q q q qA clA B p s cl p s p s p s B    

  intq qA B cl A Bp s   . Hence A B is q open sets. 

Theorem 2.16: Let A  and B be subsets of X such that ( )q qB A p s cl B  .if B is q open set then A is 

also q open set. 

3. q Continuity in quad topological space 

Definition 3.1: A function f from a quad topological space 1 2 3 4( , , , , )X T T T T into another quad topological 

space  1 2 3 4, , , ,Y W W W W is called q continuous if  1f V
 is q open set in X for each quad open set V

in Y . 

Example 3.2: Let, { , , , }X a b c d , 1 { , }T X  , 2 { , ,{ },{ , }}T X a b c ,

3 4{ , ,{ , , }}, { , ,{ , }}T X a b c T X a d  
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Open sets in quad topological spaces are union of all four topologies. 
Then quad open sets of X  { , ,{ },{ , },{ , , },{ , }}X a b c a b c a d . 

( )q qp s O X sets of X  { , ,{ },{ , },{ , , },{ , }}X a b c a b c a d . 

Let {1,2,3,4}Y  , 
1 { , }W Y  ,

2 { , ,{1}.{2,3}}W Y  , 
3 4{ , ,{1,2,3}}, { , ,{1,4}}W X W X    

quad open sets of { , ,{1},{2,3},{1,2,3},{1,4}}Y Y  . 

( )q qp s O Y sets of { , ,{1},{2,3},{1,2,3},{1,4}}Y Y  . 

 Consider the function :f X Y is defined as  
1{1} { },f a  1 1{2,3} { , }, {1,2,3} { , , }f b c f a b c   1 1 1( , ) {1,4}, ( ) , ( )f a d f f Y X      . 

Since the inverse image of each quad open set in Y under f is 
q open set in X . Hence f  is 

q

continuous function. 

Theorem 3.3: Let  1 2 3 4 1 2 3 4: ( , , , , ,, , , ) Y Wf T WX T WT T W be a 
q continuous open function .If A  is an 

q open set of X , then ( )f A is 
q open in Y . 

Proof :  First ,let A  be 
q open set  in X .There exist an quad open set U in X such that 

( )q qA U p s cl A  .since f is 
q  open function then ( )f U is quad open in Y . Since f is  

q  continuous 

function, we have ( ) ( ) ( ( )) ( ( ))q q q qf A f U f p s cl A p s cl f A   .This show that ( )f A is 
q  open in Y . 

Let A  be 
q  open in X .There exist an 

q  open set U such that ( ( ))q qU A p s cl U  . Since f is 
q  

continuous function, we have ( ) ( ) ( ( )) ( ( ))q q q qf U f A f p s cl U p s cl f U   .by the proof of first part,

( )f U is  
q open in X .Therefore , ( )f A is 

q  open inY . 

 

Theorem 3.4: Let 1 2 3 4( , , , , )X T T T T and  1 2 3 4, , , ,Y W W W W be two quad topological space .Then :f X Y

is 
q  continuous function if and only if 1( )f V  is 

q closed in X  whenever V  is quad closed in Y . 

 

Theorem 3.5: Let 1 2 3 4( , , , , )X T T T T and  1 2 3 4, , , ,Y W W W W be two quad topological spaces. A function 

:f X Y  is 
q continuous if and only if the inverse image of every 

q open set in Y is quad open in .X  

Theorem 3.6: Let  1 2 3 4 1 2 3 4: ( , , , , ,, , , ) Y Wf T WX T WT T W be a 
q continuous open function .If V  is an 

q open set of Y , then 1( )f V is q open in X . 

Proof : First ,let V be q open set of Y .There  exist an q set W in Y .such that ( )q qV W p s cl V  .Since 

f  is quad open set ,we have 
1 1 1 1( ) ( ) ( ( )) ( ( ))q q q qf V f W f p s cl V p s cl f V      .since f is q

continuous, 1( )f W is q  open set in X .By theorem 2.14 , 1( )f V is q open  set in X .The proof of the 

second part is shown by using the fact of first part. 

Theorem 3.7:  The following are equivalent for a function  1 2 3 4 1 2 3 4: ( , , , , ,, , , ) Y Wf T WX T WT T W : 

a) f is  q continuous function ; 

b) the inverse image of each q closed set of Y is  q  closed in X ; 
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c) For each x X and each quad open set V  inW containing ( )f x ,there exist an 
q open set U  of 

X containing x  such that ( )f U V ; 

d) 
1 1( ( )) ( ( ))q q q qp s cl f B f p s cl B  for every subset B ofY . 

e) ( ( )) ( ( ))q q q qf p s cl A p s cl f A for every subset A of X . 

Theorem 3.8:  If 
1 2 3 4 1 2 3 4: ( , , , , ) ( , , , , )f X P P P P Y W W W W and 

1 2 3 4 1 2 3 4: ( , , , , ) ( , , , , )g Y W W W W Z      be 

two 
q continuous function then  

1 2 3 4 1 2 3 4: ( , , , , ) ( , , , , )gof X P P P P Z      may not be 
q continuous 

function. 

Theorem 3.9: Let  1 2 3 4 1 2 3 4: ( , , , , ,, , , ) Y Wf T WX T WT T W  be bijective .Then the following conditions are 

equivalent:  
     i) f is 

q open continuous function. 

     ii) f is 
q closed continuous function and  

    iii)  1f 

 is 
q continuous function. 

Proof:(i) (ii) Suppose B  is a quad closed set in X .Then X B  is an  quad open set in X .Now by (i) 

( )f X B  is a 
q open set in Y .Now since f  is bijective so ( ) ( )f X B Y f B   .Hence ( )f B is a 

q

closed set in Y .Therefore f is a 
q closed continuous function. 

(ii) (iii) Let f  is an 
q closed map and B be 

q   closed set of X .Since 1f   is bijective so 1 1( ) ( )f B 

which is an 
q closed set in Y . Hence 1f   is 

q  continuous function. 

(iii) (i) Let A  be a quad open set in X .Since 1f   is a 
q continuous function so 1 1( ) ( ) ( )f A f A   is a 

q  open set in Y . Hence f is 
q open continuous function. 

Theorem 3.10: Let X  and Y are two quad topological spaces. Then 

1 2 3 4 1 2 3 4: ( , , , , ) ( , , , , )f X P P P P Y W W W W is 
q  continuous function if one of the followings holds: 

a) 
1 1( int ( )) int ( ( ))q q q qf p s B p s f B  , for every quad open set B inY . 

b) 
1 1( ( )) ( ( ))q q q qp s cl f B f p s cl B  , for every quad open set B inY . 

Proof: Let B be any quad open set in Y and if condition (i) is satisfied then
1 1( int ( )) int ( ( ))q q q qf p s B p s f B  . 

We get 
1 1( ) int ( ( ))q qf B p s f B  .Therefore 1( )f B is a quad pre semi open set in X .Hence f is  q  

continuous function. Similarly we can prove (ii). 

Theorem 3.11:  A function 1 2 3 4 1 2 3 4: ( , , , , ) ( , , , , )f X P P P P Y W W W W  is called q open continuous 

function if and only if ( int ( )) int ( ( ))q q q qf p s A p s f A , for every q  open set A in X . 

Proof: Suppose that f is a q open continuous function. 

Since  int( )q qp s A A so ( int( )) ( )q qf p s A f A . 

By hypothesis ( int( ))q qf p s A is an q  open set and int( ( ))q qp s f A is largest q open set contained in

( )f A so ( int( )) int( ( ))q q q qf p s A p s f A . 
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Conversely, suppose A  is an 
q  open set in X .So ( int( )) int( ( ))q q q qf p s A p s f A . 

Now since int( )q qA p s A so ( ) int( ( ))q qf A p s f A .Therefore ( )f A is a 
q open set in Y and f is 

q

open continuous function. 

Theorem 3.12:  A function 
1 2 3 4 1 2 3 4: ( , , , , ) ( , , , , )f X P P P P Y W W W W  is called 

q closed continuous 

function if and only if ( ( )) ( ( ))q q q qp s cl f A f p s cl A , for every 
q  closed set A in X . 

Proof: Suppose that f is a 
q closed continuous function. Since ( )q qA p s cl A  so ( ) ( ( ))f A f pscl A .By 

hypothesis, ( ( ))q qf p s cl A is a 
q closed set and ( ( ))q qp s cl f A  is smallest 

q closed set containing ( )f A

so ( ( )) ( ( ))q q q qp s cl f A f p s cl A . 

Conversely, suppose A is an 
q  closed set in X .So ( ( )) ( ( ))q q q qp s cl f A f p s cl A . 

Since ( )q qA p s cl A so ( ( )) ( )q qp s cl f A f A .Therefore ( )f A is a 
q closed set in Y and f is 

q closed 

continuous function. 

Theorem 3.13: Let 1 2 3 4( , , , , )X T T T T and  1 2 3 4, , , ,Y W W W W be two quad topological space. Then, :f X Y is  

q continuous function if and only if ( ( )) ( ( ))q q q qf p s cl A p s cl f A A X   . 

Proof: Suppose :f X Y is 
q continuous function. Since [ ( )]q qp s cl f A is 

q  closed in Y . Then by 

theorem (3.4) 1[ ( ( ))]q qf p s cl f A  is 
q  closed in X , 

1 1( ( ( ))) ( ( ))q q q q q qp s cl f p s clf A f p s clf A   − − − −(1). 

Now : 1 1( ) ( ( )), ( ( )) ( ( ))q q q qf A p s cl f A A f f A f p s clf A    . 

Then  1 1( ) ( ( ( ))) ( ( ))q q q q q q q qp s cl A p s cl f p s clf A f p s clf A   by (1). 

Then ( ( )) ( ( ))q q q qf p s cl A p s cl f A . 

Conversely, Let ( ( )) ( ( ))q q q qf p s cl A p s cl f A A X  . 

Let F  be q  closed set in Y , so that ( )q qp s cl F F . Now  1( )f F X   , by hypothesis, 
1 1( ( ( ))) ( ( ( )) ( )q q q q q qf p s cl f F p s cl f f F p s cl F F    . 

Therefore 1 1( ( ) ( )q qp s cl f F f F  . But 1 1( ) ( ( )q qf F p s cl f F   . 

Hence 1 1( ( ) ( )q qp s cl f F f F   and so 1( )f F  is 
q  closed in X . 

Hence by theorem (3.4) 𝑓 is q continuous function. 

 

Theorem 3.14: Let 1 2 3 4( , , , , )X T T T T and  1 2 3 4, , , ,Y W W W W be two quad topological spaces. Then, :f X Y is 

q continuous function if and only if 
1 1( ( )) ( ( ))q q q qp s cl f B f p s cl B B Y    . 

Proof: Suppose :f X Y is q continuous. Since ( )q qp s cl B is q   closed in Y , then by theorem (3.4) 
1( ( ))q qf p s cl B is q  closed in X and  therefore , 1 1( ( ( ))) ( ( )).........(2)q q q q q qp s cl f p s cl B f p s cl B   

Now, ( )q qB p s cl B ,then 1 1( ) ( ( ))q qf B f p s cl B  ,then 
1 1 1( ( )) ( ( ( ))) ( )q q q q q q q qp s cl f B p s cl f p s cl B f p s clB    by (2) 
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Conversely: Let the condition hold and let F  be any quad closed set in Y so that ( )q qp s cl F F . By 

hypothesis, 1 1 1( ( )) ( ( )) ( )q q q qp s cl f F f p s cl F f F    .But 1 1( ) ( ( ))q qf F p s cl f F  always.Hence

1 1( ( )) ( )q qp s cl f F f F  and so 1( )f F  is 
q  closed in X . It follows from theorem (3.4) that f is 

q

continuous function. 
 

Theorem 3.15 Let 1 2 3 4( , , , , )X T T T T and  1 2 3 4, , , ,Y W W W W be two quad topological spaces. Then, :f X Y is 

q continuous open  function if and only if 1 1( int( )) int( ( ))q q q qf p s B p s f B B Y    . 

Proof: Let :f X Y be a quad continuous. Since  int( )q qp s B  is 
q open inY , then by theorem (3.3) 

1( int( ))q qf p s B  is 
q open in  X and  therefore , 1 1int ( ( int( ))) ( int( )).........(3)q q q q q qp s f p s B f p s B   

Now, int( )q qp s B B ,then 1 1( int( )) ( )q qf p s B f B  ,then 1 1int( ( int( ))) int( ( ))q q q q q qp s f p s B p s f B   

by (3) 
Conversely: Let the condition hold and let G  be any 

q  open set in Y so that int( )q qp s G G . By 

hypothesis, 1 1( int( )) int ( )q q q qf p s G p s f G  .Since 1 1( int( )) ( )q qf p s G f G  then
1 1( ) int( ( ))q qf G p s f G  But 1 1int( ( )) ( )q qp s f G f G  always and so 1 1int( ( )) ( )q qp s f G f G 

.Therefore 1( )f G  is 
q  open in X . Consequently by theorem (3.3) f is 

q  continuous function. 

 

4. 
q open sets  in quad topological space  

 

Definition 4.1: Let 1 2 3 4( , , , , )X T T T T be a quad topological space. A subset A  of X  is called 
q open in 

X , if intq q q q q qA s p cls p s p clA . The complement of 
q open set is called 

q closed set. The collection 

of all 
q open sets of X is denoted  by 1 2( , , )q qS PO X T T . 

Example 4.2: Let { , , , }X a b c d , 1 { , ,{ },{ , , }}T X a a b d , 2 { , ,{ , }}T X a d , 3 { , ,{ }}T X b

4 { , ,{ , }}T X a b  
Quad open sets in quad topological spaces are union of all four topologies. 

q  
Open set of X  is denoted by ( ) { , ,{ },{ },{ , },{ , },{ , , }}q qs p O X X a b a b a d a b d . 

Let { }A a ; 

int { } intq q q q q q q q q q

q q

s p cls p s p cl a s p cls p X

s p clX

X







 

{ }A a is q open. 

Definition 4.3: Let 1 2 3 4( , , , , )X T T T T be a quad topological space. Let A X . An element x A  is called 

q interior point of A , if   there exist a q open set V such that x V A  . The set of all q  interior points 

of A  is called   the q interior of A  and is denoted by int( )q qs p A . 
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Theorem 4.4: Let A X be a quad topological space. int( )q qs p A is equal to the union of all 
q open sets 

contained in A . 
Note 4.5: 1. int( )q qs p A A . 

                2. int( )q qs p A is
q open sets. 

Theorem 4.6: int( )q qs p A  is the largest 
q open sets contained in A . 

Theorem 4.7: A  is 
q open if and only if int( )q qA s p A  

Theorem 4.8: int( ) int intq q q q q qs p A B s p A s p B   . 

Definition 4.9: Let 1 2 3 4( , , , , )X T T T T be a quad topological space. Let A X . The intersection of all 
q

closed sets containing A is called a
q  closure of A and is denoted as ( )q qs p cl A . 

Note 4.10  : Since intersection of 
q closed sets is 

q closed set, ( )q qs p cl A  is a 
q  closed set. 

Note 4.11: ( )q qs p cl A  is the smallest 
q closed set containing A . 

Theorem 4.12: A  is 
q closed set if and only if ( )q qA s p cl A . 

Theorem 4.13: Let A  and B be subsets of 1 2 3 4( , , , , )X T T T T and x X  

a) If A B , then ( ) ( )q q q qs p cl A s p cl B . 

b) ( )q qx s p cl A if and only if A U    for every 
q open set U containing x . 

Theorem 4.14: Let A be a subsets of 1 2 3 4( , , , , )X T T T T , if there exist an 
q open set U such that 

( )q qA U s p cl A  , then A  is 
q open. 

Theorem   4.15: In a quad topological space 1 2 3 4( , , , , )X T T T T  , the union of any two 
q open sets is 

always an 
q open set. 

Theorem 4.16: Let A  and B be subsets of X such that ( )q qB A s p cl B  .if B is 
q open set then A is 

also 
q open set. 

 

5. T Continuity in quad topological space 

Definition 5.1: A function f from a quad topological space 1 2 3 4( , , , , )X T T T T into another quad topological 

space  1 2 3 4, , , ,Y W W W W is called q continuous if  1f V
 is q open set in X for each quad open set V

in Y . 

Example 5.2: Let, { , , , }X a b c d , 1 { , }T X  , 2 { , ,{ }}T X d , 3 { , ,{ , }},T X c d 4 { , ,{ }}T X c
 

Open sets in quad topological spaces are union of four   topologies. 
Then quad open sets of X  { , ,{ },{ },{ , }}X d c c d . 

( )q qs p O X sets of X  { , ,{ },{ },{ , }}X d c c d . 

Let {1,2,3,4}Y  , 1 { , }W Y  , 2 { , ,{1}}W Y  , 3 { , ,{2}},W Y  4 { , ,{1,2}}W Y   

quad open sets of { , ,{1},{2},{1,2}}Y Y  . 

( )q qs p O Y sets of { , ,{1},{2},{1,2}}Y Y  . 

 Consider the function :f X Y is defined as  
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1{1} { },f c  1 1{2} { }, {1,2} { , }f d f c d   1 1, ( ) , ( )f f Y X    . 

Since the inverse image of each quad open set in Y under f  is 
q open set in X . Hence f  is 

q  

continuous function. 

Theorem 5.3: Let  1 2 3 4 1 2 3 4: ( , , , , ,, , , ) Y Wf T WX T WT T W be a 
q continuous open function .If A  is an 

q open set of X , then ( )f A is 
q open in Y . 

Proof :  First ,let A  be 
q open set  in X .There exist an quad open set U in X such that 

( )q qA U s p cl A  .since f is 
q  open function then ( )f U is quad open in Y . Since f is  

q  continuous 

function, we have ( ) ( ) ( ( )) ( ( ))q q q qf A f U f s p cl A s p cl f A   .This show that ( )f A is 
q  open in Y . 

Let A  be 
q  open in X .There exist an 

q  open set U such that ( ( ))q qU A p s cl U  . Since f is 
q  

continuous function, we have ( ) ( ) ( ( )) ( ( ))q q q qf U f A f s p cl U s p cl f U   .by the proof of first part,

( )f U is  
q open in X .Therefore , ( )f A is 

q  open inY . 

 

Theorem 5.4: Let 1 2 3 4( , , , , )X T T T T and  1 2 3 4, , , ,Y W W W W be two quad topological space .Then :f X Y

is 
q  continuous function if and only if 1( )f V  is 

q closed in X  whenever V  is quad closed in Y . 

 

Theorem 5.5: Let 1 2 3 4( , , , , )X T T T T and  1 2 3 4, , , ,Y W W W W be two quad topological spaces. A function 

:f X Y  is 
q continuous   if and only if the inverse image of every 

q open set in Y is quad open in 

.X  
Theorem 5.6: Let  1 2 3 4 1 2 3 4: ( , , , , ,, , , ) Y Wf T WX T WT T W be a 

q continuous open function .If V  is an 

q open set of Y , then 1( )f V is 
q open in X . 

Proof : First ,let V be 
q open set of Y .There  exist an 

q set W in Y .such that ( )q qV W s p cl V  .Since 

f  is quad open set ,we have 
1 1 1 1( ) ( ) ( ( )) ( ( ))q q q qf V f W f s p cl V s p cl f V      .since f is 

q

continuous, 1( )f W is q  open set in X .By theorem 4.14, 1( )f V is q open  set in X .The proof of the 

second part is shown by using the fact of first part. 
 

Theorem 5.7: The following are equivalent for a function  1 2 3 4 1 2 3 4: ( , , , , ,, , , ) Y Wf T WX T WT T W : 

f) f is  q continuous function ; 

g) The inverse image of each q  closed set of Y is q  closed in X ; 

h) For each x X and each quad open set V  inW containing ( )f x ,there exist an q open set U  of 

X containing x  such that ( )f U V ; 

i) 
1 1( ( )) ( ( ))q q q qs p cl f B f s p cl B  for every subset B ofY . 

j) ( ( )) ( ( ))q q q qf s p cl A s p cl f A for every subset A of X . 
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Theorem  5. 8:  If 
1 2 3 4 1 2 3 4: ( , , , , ) ( , , , , )f X P P P P Y W W W W and 

1 2 3 4 1 2 3 4: ( , , , , ) ( , , , , )g Y W W W W Z      

be two 
q continuous function then  

1 2 3 4 1 2 3 4: ( , , , , ) ( , , , , )gof X P P P P Z      may not be 
q continuous 

function . 

Theorem 5.9: Let 1 2 3 4 1 2 3 4: ( , , , , ) ( , , , , )f X P P P P Y W W W W  be bijective .Then the following conditions are 

equivalent: 
i) f is 

q  open continuous function. 

ii) f is 
q closed continuous function and  

iii) 1f 

 is 
q continuous function. 

Proof:(i) (ii) Suppose B  is a quad closed set in X .Then X B  is an  quad open set in X .Now by (i) 

( )f X B  is a
q open set in Y .Now since f  is bijective so ( ) ( )f X B Y f B   .Hence ( )f B is a 

q

closed set in Y .Therefore f is a 
q closed continuous function. 

(ii) (iii) Let f  is an 
q closed map and B be 

q  closed set of X .Since 1f   is bijective so 1 1( ) ( )f B 

which is an 
q closed set in Y . Hence 1f   is 

q continuous function. 

(iii) (i) Let A  be a quad open set in X .Since 1f   is a 
q continuous function so 1 1( ) ( ) ( )f A f A   is a

q open set in Y . Hence f is 
q open continuous function. 

Theorem 5.10: Let X  and Y are two quad topological spaces. Then 

 1 2 3 4 1 2 3 4: ( , , , , ,, , , ) Y Wf T WX T WT T W is 
q  continuous function if one of the followings holds: 

c) 
1 1( int ( )) int ( ( ))q q q qf s p B s p f B  , for every quad open set B inY . 

d) 
1 1( ( )) ( ( ))q q q qs p cl f B f s p cl B  , for every quad open set B inY . 

Proof: Let B be any quad open set in Y and if condition   (i) is satisfied then
1 1( int ( )) int ( ( ))q q q qf s p B s p f B  . 

We get 
1 1( ) int ( ( ))q qf B s p f B  .Therefore 1( )f B is a 

q  open set in X .Hence f is 
q continuous 

function. Similarly we can prove (ii). 

Theorem 5.11:  A function  1 2 3 4 1 2 3 4: ( , , , , ,, , , ) Y Wf T WX T WT T W  is called 
q open continuous function 

if and only if ( int ( )) int ( ( ))q q q qf s p A s p f A , for every quad open set A in X . 

Proof: Suppose that f is a q open continuous function. 

since int( )q qs p A A so ( int( )) ( )q qf s p A f A . 

By hypothesis ( int( ))q qf s p A is an q  open set and int( ( ))q qs p f A is largest q open set contained in

( )f A so ( int( )) int( ( ))q q q qf s p A s p f A . 

Conversely, suppose A  is an quad open set in X .So ( int( )) int( ( ))q q q qf s p A s p f A . 

Now since int( )q qA s p A so ( ) int( ( ))q qf A s p f A .Therefore ( )f A is a q open set in Y and f is q

open continuous function. 
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Theorem 5.12:A function  1 2 3 4 1 2 3 4: ( , , , , ,, , , ) Y Wf T WX T WT T W  is called 
q closed continuous 

function if and only if ( ( )) ( ( ))q q q qs p cl f A f s p cl A , for every quad closed set A in X . 

Proof: Suppose that f is a 
q closed continuous function. since ( )q qA s p cl A  so ( ) ( ( ))q qf A f s p cl A

.By hypothesis, ( ( ))q qf s p cl A is a 
q closed set and ( ( ))q qs p cl f A  is smallest 

q closed set containing 

( )f A so ( ( )) ( ( ))q q q qs p cl f A f s p cl A . 

Conversely, suppose A is an quad closed set in X .So ( ( )) ( ( ))q q q qs p cl f A f s p cl A . 

Since ( )q qA s p cl A so ( ( )) ( )q qs p cl f A f A .Therefore ( )f A is a 
q closed set in Y and f is 

q closed 

continuous function. 

Theorem 5.13: Let 1 2 3 4( , , , , )X T T T T and  1 2 3 4, , , ,Y W W W W be two quad topological space .Then, 

:f X Y is
q continuous function if and only if 1( )f V  is 

q closed in X  whenever V  is quad closed in 

Y  

Theorem 5.14: Let 1 2 3 4( , , , , )X T T T T and  1 2 3 4, , , ,Y W W W W be two quad topological space . Then, :f X Y is 

q continuous function if and only if ( ( )) ( ( ))q q q qf s p cl A s p cl f A A X   . 

Proof: Suppose :f X Y is 
q continuous function. Since [ ( )]q qs p cl f A is 

q   closed in Y . Then by 

theorem (5.4) 1[ ( ( ))]q qf s p cl f A  is 
q  closed in X , 

1 1( ( ( ))) ( ( ))q q q q q qs p cl f s p clf A f s p clf A   − − − −(1). 

Now: 1 1( ) ( ( )), ( ( )) ( ( ))q q q qf A s p cl f A A f f A f s p clf A    . 

Then  1 1( ) ( ( ( ))) ( ( ))q q q q q q q qs p cl A s p cl f s p clf A f s p clf A   by (1). 

Then ( ( )) ( ( ))q q q qf s p cl A s p cl f A . 

Conversely, Let ( ( )) ( ( ))q q q qf s p cl A s p cl f A A X  . 

Let F  be q  closed set in Y  ,so that ( )q qs p cl F F .Now 1( )f F X  , by hypothesis, 
1 1( ( ( ))) ( ( ( )) ( )q q q q q qf s p cl f F s p cl f f F s p cl F F    . 

Therefore 1 1( ( ) ( )q qs p cl f F f F  . But 1 1( ) ( ( )q qf F s p cl f F 
 
  always. 

Hence 1 1( ( ) ( )q qs p cl f F f F   and so 1( )f F  is 
q  closed in X . 

Hence by theorem (5.14) 𝑓 is q continuous function. 

Theorem 5.15: Let 1 2 3 4( , , , , )X T T T T and  1 2 3 4, , , ,Y W W W W be two quad topological spaces. Then, :f X Y is 

q continuous function if and only if 
1 1( ( )) ( ( ))q q q qs p cl f B f s p cl B B Y    . 

Proof: Suppose :f X Y is q continuous. Since ( )q qs p cl B is q  closed in Y , then by theorem (5.4) 
1( ( ))q qf s p cl B is q  closed in X and therefore , 1 1( ( ( ))) ( ( )).........(2)q q q q q qs p cl f s p cl B f s p cl B   

Now, ( )q qB s p cl B then 1 1( ) ( ( ))q qf B f s p cl B  , 

then 1 1 1( ( )) ( ( ( ))) ( )q q q q q q q qs p cl f B s p cl f s p cl B f s p clB    by (2) 
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Conversely: Let the condition hold and let F  be any quad closed set in Y so that ( )spcl F F . By 

hypothesis, 1 1 1( ( )) ( ( )) ( )q q q qs p cl f F f s p cl F f F    .But 1 1( ) ( ( ))q qf F s p cl f F  always. Hence 
1 1( ( )) ( )q qs p cl f F f F  and so 1( )f F  is 

q  closed in X . It follows from theorem (5.6) that f is  
q

continuous function. 

Theorem 5.16: Let 
1 2 3 4( , , , , )X T T T T and  1 2 3 4, , , ,Y W W W W be two quad topological spaces. Then, :f X Y is 

q open continuous function if and only if 1 1( int( )) int( ( ))q q q qf s p B s p f B B Y    . 

Proof: Let :f X Y be a quad continuous. Since  int( )q qs p B  is 
q open in Y , then by theorem (5.3) 

1( int( ))q qf s p B  is 
q open in  X and  therefore , 1 1int ( ( int( ))) ( int( )).........(3)q q q q q qs p f s p B f s p B   

Now, int( )q qs p B B , then 1 1( int( )) ( )q qf s p B f B  ,then 1 1int( ( int( ))) int( ( ))q q q q q qs p f s p B s p f B   

by (3) 
Conversely: Let the condition hold and let G  be any 

q  open set in Y so that int( )q qs p G G .  

Byhypothesis, 1 1( int( )) int ( )q q q qf s p G s p f G  .Since 1 1( int( )) ( )q qf s p G f G  then
1 1( ) int( ( ))q qf G s p f G  But 1 1int( ( )) ( )q qs p f G f G  always  and so 1 1int( ( )) ( )q qs p f G f G 

.Therefore 1( )f G  is 
q  open in X . Consequently by theorem (5.2) f is 

q  continuous function. 

CONCLUSION: In this paper we studied new forms of 
q open sets and

q open set in quad topological 

space. We also studied 
q  continuous function and 

q continuous function in quad topological space. It 

is established that composition of any two 
q open sets is again a

q open set in quad topological space 

and composition of any two 
q open sets is again a

q open set in quad topological space. In 
q

continuity, inverse image of every quad open is 
q  open set and in 

q continuity, inverse image of every 

quad open is 
q  open set. 
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