

Non-Singular Submatrices of New Array & Triply Extended MDS Codes B. S. Brar

Abstract

: Roth and Seroussi (1985) showed the construction over the field F = GF(q) of the arrays of the form S_q such that any submatrix of S_q is non-singular and constructed arrays are maximal in the sense that, when q is odd, no field element can be appended to any of the rows without creating singular submatrices. In this paper, new arrays of the form $S_q^{/}$ over the field F = GF(q) have been constructed such that every square submatrix is non-singular; that when q is odd, then a singular submatrix is generated; when q is even, and k = 3, then by appending $v = a_1$ or $v = a_2$ to row $S_q(3)$, we will never get a singular submatrix, further we will get two maximal $4 \times (q - 2)$ rectangles and combining these two $4 \times (q - 2)$ rectangles with identity matrix of order 4×4 , we obtain generator matrices of order $4 \times (q + 2)$ for triply extended (q + 2, 4, q - 1) MDS codes; and by appending $v = a_1$ or $v = a_2$ to row $S_q(q - 3)$, we will never get a singular submatrix , further we will get two maximal $(q - 2) \times 4$ rectangles and combining these two $(q - 2) \times 4$ rectangles with identity matrix of order $(q - 2) \times (q - 2)$, we obtain generator matrices of order $(q - 2) \times (q - 2) \times 4$ rectangles with identity matrix of order $(q - 2) \times (q - 2)$, we obtain generator matrices of order $(q - 2) \times (q - 2) \times 4$ rectangles with identity matrix of order $(q - 2) \times (q - 2)$, we obtain generator matrices of order $(q - 2) \times (q - 2) \times (q - 2)$ for triply extended (q + 2, q - 2, 5) MDS codes.

Keywords; Arrays, GC and GEC matrices, generator matrices, primitive element and characteristic of finite field, RS Codes, Triply Extended MDS Codes.

I. Introduction

A primitive element of a finite field F = GF(q) is a generator of the field's multiplicative group [Steven Roman (1995)]. The multiplicative group of a finite field is cyclic, and an element of the field is called a primitive element of that field if and only if it is a generator for the multiplicative group. So, every non-zero element of finite field F = GF(q) is power of a primitive element.

Roth and Seroussi (1985) considered the following triangular array over finite field F = GF(q):

	1	1	1	1	•	•	•	1	1	1			
	1	a_1	a ₂	a_3		•	•	a _{q-3}	a _{q-2}				
	1	a_2	a_3	a_4	•			a _{q-2}					
S _q :		P .										(1)	
	-	2.			•								
	1	a _{q-3}	₃ a _q	-2									
	1	a _q	-2										
	1												

¹Department of Applied Sciences, Baba Farid College of Engineering and Technology, Bathinda, Punjab (India) [e-mail: <u>hodas.bfcet@yahoo.in</u>].

where
$$a_i = \frac{1}{1 - \gamma^i}$$
, $1 \le i \le (q - 2)$, for an arbitrary primitive element γ of field $F = GF(q)$.

If the field F = GF(5), i.e. if q = 5, then because a primitive element of field F is a generator of the field as multiplicative group, so for this multiplicative group the binary operation will be "multiplicative modulo 5". Keeping this in view, we find that 3 is a primitive element of field F = GF(q). Now taking γ =

3 for field F = GF(5), (q = 5, so that $1 \le i \le (q - 2)$ implies $1 \le i \le 3$), and using $a_i = \frac{1}{1 - \gamma^i}$, $1 \le i \le 3$, we shall obtain: $a_1 = 2$, $a_2 = 3$, $a_3 = 4$.

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Aryabhatta Journal of Mathematics and Informatics

Supervisional Journay

Therefore (1) becomes as: 1 1 1 1 1 2 3 1 4 S₅: 1 3 4 4 1 1

If the field F = GF(7), i.e. if q = 7, then because a primitive element of field F = GF(7)is a generator of the field as multiplicative group, so for this multiplicative group the binary operation will be "multiplicative modulo 7". Keeping this in view, we find that 3 is a primitive element of field F =GF(7). Now taking $\gamma = 3$ for field F = GF(7), (q = 7, so that $1 \le i \le (q - 2)$ implies $1 \le i \le 5$), and using $a_i =$

(2)

 $\frac{1}{1-\gamma^{i}}$, $1 \le i \le 5$, we will obtain: $a_1 = 3$, $a_2 = 6$, $a_3 = 4$, $a_4 = 2$, $a_5 = 5$. Therefore (1) becomes as: 1 1 1 1 1 1 1 2 5 1 3 6 4 4 2 5 (3)1 6 4 5 S₇: 1 2 2 5 1 1 5

Every square submatrices of S_q is non-singular. Such arrays [MacWilliams and Sloane (1977)] were first put forward by Singleton for q = 5 and q = 7 [R.C. Singleton (1964)]. But Singleton gave no generalisation for larger fields. Roth and Seroussi (1985) showed that such arrays are maximal, that is, if q is odd, no field element can be appended to any row, except to first row, without generating singular matrices; and it is true when q is even, except for one element, which can be appended to each of the 3^{rd} and (q - 1)st rows. This leads to Triply Extended Reed- Solomon Codes.

II. Non-Singular Submatrices of New Array Consider the finite field F = GF(q), and consider the array: 1 1 1 . . . 1 1 1 1 a_1 a_2 a₃. . a_{a-4} a_{a-3} 1 a₂ a_3 a₄ . . . **a**_{α-3} a_{q-2} 1 a_3 a4 a₅. a_{a-2} . S_{α}' : (4)1 a_{q-4} a_{q-3} a_{q-2} 1 a_{q-3} a_{q-2} where $a_i = \frac{1}{1 - \gamma^i}$, $1 \le i \le (q - 2)$, for an arbitrary primitive element γ of field F = GF(q).

So, if the field F = GF(11), i.e. if q = 11, then because a primitive element of field F = GF(11)is a generator of the field as multiplicative group, so for this multiplicative group the binary operation will be "multiplicative modulo 11". Keeping this in view, we find that 2 is a primitive element of field F =GF(11). Now taking $\gamma = 2$ for field F = GF(11), $(q = 11, so that 1 \le i \le (q - 2) implies 1 \le i \le 9)$,

and using $a_i = \frac{1}{1 - \gamma^i}$, $1 \le i \le 9$, we will obtain: $a_1 = 2$, $a_2 = 7$, $a_3 = 3$, $a_4 = 8$, $a_5 = 6$, $a_6 = 4$, $a_7 = 9$, $a_8 = 5$, $a_9 = 2$.

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Aryabhatta Journal of Mathematics and Informatics

Vol.09 Issue-01, (January - June, 2017) ISSN: 2394-9309 (E) / 0975-7139 (P) Aryabhatta Journal of Mathematics and Informatics (Impact Factor- 5.856)

Therefore triangular array (4) corresponding to field F = GF(11) becomes as:

				0		, , ,			0	· · ·	
	1	1	1	1	1	1	1	1	1		
	1	10	7	3	8	6	4	9	5		
	1	7	3	8	6	4	9	5	2		
	1	3	8	6	4	9	5	2			
S_{11}^{\prime} :	: 1	8	6	4	9	5	2				(5)
	1	6	4	9	5	2					
	1	4	9	5	2						
	1	9	5	2							
	1	5	2								
				1							

If the field is F = GF(13), i.e. if q = 13, then because a primitive element of field F = GF(13)is a generator of the field as multiplicative group, so for this multiplicative group the binary operation will be "multiplicative modulo 13". Keeping this in view, we find that 2 is a primitive element of field F = $(q = 13, so that 1 \le i \le (q - 2) implies 1 \le i \le 11)$, GF(13). Now taking $\gamma = 2$ for field F = GF(13),

and using $a_i = \frac{1}{1 - \gamma^i}$, $1 \le i \le 11$, we will obtain: $a_1 = 12$, $a_2 = 4$, $a_3 = 11$, $a_4 = 6$, $a_5 = 5$, $a_6 = 7$, $a_7 = 9$, $a_8 = 12$, $a_8 = 11$, $a_8 = 11$, $a_9 = 12$, $a_9 =$

8,
$$a_9 = 3$$
, $a_{10} = 10$, $a_{11} = 2$.

, ,	, 10	· -	-									
Therefore (4) becomes												
	1	1	1	1	1	1	1	1	1	1	1	
	1	12	4	11	6	5	7	9	8	3	10	
	1	4	11	6	5	7	9	8	3	10	2	
	1	11	6	5	7	9	8	3	10	2		
	1	6	5	7	9	8	3	10	2			
S_{13}^{\prime}	: 1	5	7	9	8	3	10	2				(6)
	1	7	9	8	3	10	2					
	1	9	8	3	10	2						
	1	8	3	10	2							
	1	3	10	2								
	1	10	2									

Theorem 1: Let F = GF(q) be the finite field. Consider the array (4). Then, every square submatrix of S_{α}^{\prime} is non-singular.

Proof: Let $S_q^{\prime *}$ denote the array got from S_q^{\prime} by deleting its first row. Therefore, $S_{q}^{/*}$ will be as:

1 a₁ a₂ a₃ . a_{q-4} a_{q-3} a_2 a_3 a_4 . . a_{q-3} a_{q-2} . 1 a_3 **a**₄ **a**₅ . a_{q-2} $S_{\alpha}^{\prime *}$: (7)1 a_{q-4} a_{q-3} a_{q-2} a_{q-3} a_{q-2} 1 We take the first column of $S_q^{/*}$ as the zeroth column. Let S_{ij} , $1 \le i \le (q - 3)$, 1 ≤ j ≤ (q – i

- 1), denote the entries of $S_q^{/*}$, except for the first row for which the value of j will be as $1 \le j \le (q - i - 2)$. Now for every row and 0^{th} column of $S_q^{/*}$, each entry is equal to 1. Therefore: (8)

 $S_{i0} = 1, 1 \le i \le (q - 3).$

And for every row and other columns, each entry of $S_{\alpha}^{\ /^{\ast}}$ is given by:

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Aryabhatta Journal of Mathematics and Informatics

Vol.09 Issue-01, (January - June, 2017) ISSN: 2394-9309 (E) / 0975-7139 (P) Aryabhatta Journal of Mathematics and Informatics (Impact Factor- 5.856)

$$S_{ij} = a_{i+j-1}$$
, $1 \le i \le (q-3)$, $1 \le j \le (q-i-1)$.

except for first row for which the value of S_{ij} will be:

$$S_{ij} = a_{i+j-1}, \ 1 \le i \le (q-3), \ 1 \le j \le (q-i-2). \tag{10}$$

For example, consider the entry a_{q-3} , which is present in the 2nd row and (q - 4)th column. Hence, for it, i = 2, j = (q - 4). Therefore, $S_{ij} = a_{i+j-1}$ implies $S_{ij} = a_{2+(q-4)-1} = a_{q-3}$. Similarly, consider the entry a_{q-3} in first row, it lies in (q - 3)th column. So, i = 1, j = (q - 3). Therefore, $S_{ij} = a_{i+j-1} = a_{1+(q-3)-1} = a_{q-3}$.

Now
$$a_i = \frac{1}{1 - \gamma^i}$$
, $1 \le i \le (q - 3)$, (given) (11)

We discuss the case of all rows, except the first row of $S_q^{/*}$. Now (10) and (11) implies:

$$S_{ij} = \frac{1}{1 - \gamma^{i+j-1}}, \ 1 \le i \le (q-3), \ 1 \le j \le (q-i-1).$$
(12)

Now $1 \le i \le (q-3)$, $1 \le j \le (q-i-1)$ implies $1 \le i$, $1 \le j$, $j \le (q-i-1)$ i.e. $1+1 \le i+j$, $i+j \le q-1$ i.e. $1+1-1 \le i+j-1$, $i+j-1 \le q-1-1$ i.e. $1 \le i+j-1$, $i+j-1 \le q-2$ i.e. $1 \le i+j-1 \le q-2$. Therefore in the above ranges in which S is defined always we have:

Therefore in the above ranges, in which S_{ij} is defined, always we have:

 $1 \le i + j - 1 \le q - 2$

(13)

(14)

9)

Hence i + j - 1 \neq 0. So $\gamma^{i+j-1} \neq$ 1 for an arbitrary primitive element γ of field F = GF(q). Therefore S_{ij} given by (12) stands.

Now we consider vectors:

$$\mathbf{x} = (x_1, x_2, \dots, x_{q-3}); \ \mathbf{y} = (y_0, y_1, \dots, y_{q-3})$$

defined by: $x_i = -\gamma^{-(i-1)}, 1 \le i \le (q-3); \ y_0 = 0; \ y_j = \gamma^j, 1 \le j \le (q-3)$
Therefore $\frac{x_i}{x_i + y_j} = \frac{-\gamma^{-(i-1)}}{-\gamma^{-(i-1)} + \gamma^j} = \frac{-\gamma^{-(i-1)}}{-\gamma^{-(i-1)} \cdot [1 - \gamma^{(i-1)+j}]} = \frac{1}{1 - \gamma^{i+j-1}} = S_{ij}$ (using (12))

Therefore $S_{ij} = \frac{x_i}{x_i + y_j}$, $1 \le i \le (q - 3)$, $1 \le j \le (q - i - 1)$.

Now for the first row,

$$S_{ij} = a_{i+j-1} = \frac{1}{1 - \gamma^{i+j-1}} , 1 \le i \le (q - 3), 1 \le j \le (q - i - 2).$$
(15)

Now $1 \le i \le (q - 3), 1 \le j \le (q - i - 2)$ implies $1 \le i, 1 \le j, j \le (q - i - 2)$ i.e. $1 + 1 \le i + j, i + j \le q - 2$ i.e. $1 + 1 - 1 \le i + j - 1, i + j - 1 \le q - 2$ i.e. $1 \le i + j - 1, i + j - 1 \le q - 3$ Therefore in the above ranges, in which S_{ij} is defined, always we have:

$$1 \le i + j - 1 \le q - 3$$

Hence i + j - 1 \neq 0. So $\gamma^{i+j-1} \neq$ 1 for an arbitrary primitive element γ of field F = GF (q). Therefore S_{ij} given by (15) stands.

Now we consider vectors:

$$\mathbf{x} = (x_1, x_2, \dots, x_{q-3}), \mathbf{y} = (y_0, y_1, \dots, y_{q-3})$$
defined by: $x_i = -\gamma^{-(i-1)}, 1 \le i \le (q-3); y_0 = 0; y_j = \gamma^j, 1 \le j \le (q-3).$
Therefore $\frac{x_i}{x_i + y_j} = \frac{-\gamma^{-(i-1)}}{-\gamma^{-(i-1)} + \gamma^j} = \frac{-\gamma^{-(i-1)}}{-\gamma^{-(i-1)} \cdot [1 - \gamma^{(i-1)+j}]} = \frac{1}{1 - \gamma^{i+j-1}} = S_{ij}$ (using (15))

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics

Vol.09 Issue-01, (January - June, 2017) ISSN: 2394-9309 (E) / 0975-7139 (P) Aryabhatta Journal of Mathematics and Informatics (Impact Factor- 5.856)

Therefore $S_{ij} = \frac{x_i}{x_i + y_j}$, $1 \le i \le (q - 3)$, $1 \le j \le (q - i - 2)$. (17)

Hence (14) and (17) implies:

$$S_{ij} = \frac{x_i}{x_i + y_j}, \ 1 \le i \le (q - 3), \ 1 \le j \le (q - i - 1); \ OR, \ 1 \le i \le (q - 3), \ 1 \le j \le (q - i - 2)$$
(18)

Because all x_i's are different and non-zero, so all y_j's are different, and x_i + y_j \neq 0 for i, j in

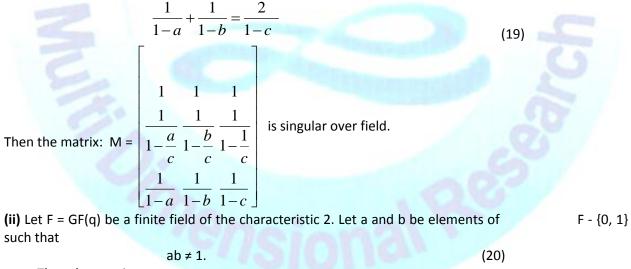
defined ranges. Therefore $S_{ij} = \frac{x_i}{x_i + y_j}$, $1 \le i \le (q - 3)$, $1 \le j \le (q - i - 1)$; OR, $1 \le i \le (q - 3)$, $1 \le (q - 3)$, $1 \le i \le (q - 3)$, $1 \le (q -$

 $\leq j \leq (q - i - 2)$ stands, and these represent all the entries of $S_q^{/*}$. Hence if we consider any squaresubmatrix of $S_q^{/*}$, then that will be nonsingular GC (Generalised Cauchy) matrix.

Now two possibilities can be there. One, every square-submatrix of S_q^{\prime} may be a square-submatrix of $S_q^{\prime*}$, in which case it will be nonsingular (by above discussion); OR, may be a rectangular-submatrix of $S_q^{\prime*}$ having an appended first row of 1s, in which case, such square-submatrices, being GEC (Generalised Extended Cauchy) matrix, are also nonsingular. Therefore we conclude that every square-submatrix of S_q^{\prime} is non-singular.

From this theorem, it follows that every sub-matrix A of $S_q^{/}$ is either a GC (Generalised Cauchy) or GEC (Generalised Extended Cauchy) matrix, hence non-singular. Therefore, we conclude that MDS code having a generator matrix [I | A] in systematic form, will be either a GRS (Generalised Reed Solomon) or a GDRS (Generalised Doubly-Extended Reed Solomon) code.

III. New Array and (q + 2, 4, q - 1) and (q + 2, q - 2, 5) Triply Extended MDS Codes Lemma: [Roth and Seroussi (1985)]. (i) Let F = GF(q) be a finite field of the characteristic other than 2. Let a, b, c are distinct elements of $F - \{1\}$ such that $c \neq 0$, and



Then the matrix:

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics <u>http://www.ijmr.net.in</u> email id- irjmss@gmail.com A LONAL JOURNAL

 $N = \begin{bmatrix} 1 & 1 & 1 \\ \frac{1}{1+ab} & \frac{1}{1+a^{2}} & \frac{1}{1+a} \\ \frac{1}{1+b} & \frac{1}{1+a} & \frac{1}{1+\frac{1}{b}} \end{bmatrix}$ is singular over field F = GF(q). (21)

Theorem 2: Let F = GF(q) be the field. Consider the array (6). Let $S_q(0)$, $S_q(1)$, $S_q(2)$, \ldots , $S_q(q - 3)$ denote the rows of S_q^{-1} . Then attempt to append an element of field F = GF(q) to first three rows $S_q(0)$, $S_q(1)$, $S_q(2)$ will result to get only 1×1 submatrix [v], and if v is a non-zero element of field, then this submatrix [v] is non-singular, and if v is zero element, then this submatrix [v] is singular. Further appending element v = 0 of field to any row $S_q(k)$, $3 \le k \le q - 3$, results in having a non-singular submatrix. Let $L = \{1\}U\{a_i : k \le i \le (q - 2)\}$. If v ($\neq 0$) belongs to L, we get a singular submatrix is generated. If v ($\neq 0$) does not belong to L, and q is odd, then a singular submatrix is generated. If v ($\neq 0$) does not belong to L, q is even, and k = 3, then by appending v = a_1 or v = a_2 to row $S_q(3)$, we will never get a singular submatrix, further we will get two maximal $4 \times (q - 2)$ rectangles with identity matrix of order $4 \times (q - 2)$ rectangles with identity matrix of order

order $4 \times (q + 2)$ for triply extended (q + 2, 4, q - 1) MDS codes; and by appending $v = a_1$ or $v = a_2$ to row $S_q(q - 3)$, we will never get a singular submatrix, further we will get two maximal $(q - 2) \times 4$ rectangles and combing these two $(q - 2) \times 4$ rectangles with identity matrix of order $(q - 2) \times (q - 2)$, we obtain generator matrices of order $(q - 2) \times (q + 2)$ for triply extended (q + 2, q - 2, 5) MDS codes. If $v \neq 0$ does not belong to L, q is even, $4 \le q \le q/2$, $q \ge 8$ then we will get a singular submatrix.

Proof: Consider v as an arbitrary element of field F = GF(q). It is clear from the form of array S_q^{\prime} that if we try to append any arbitrary element of field F = GF(q) like v to first three rows $S_q(0)$, $S_q(1)$, $S_q(2)$ of the array S_q^{\prime} (appending v to any of these first three rows is a similar thing, because all a_i 's and 1 are the non-zero elements of the field, say to row $S_q(0)$, then S_q^{\prime} will become as:

. . 1 1 . 1 1 1 1 v 1 a_1 a_2 a₃ . . . a_{q-4} a_{q-3} a_2 a_3 a₄ . . . **a**_{α-3} a_{a-2} a₃ a_{q-2} a₄ **a**₅... S_{α}^{\prime} : 1 a_{q-3} a_{q-2} a_{q-4} 1 a_{q-3} a_{q-2}

Therefore, by utilising this v, we will be able to get only 1×1 submatrix [v], and if v is a non-zero element of field, then this submatrix [v] is non-singular, and if v is zero element, then this submatrix [v] is singular.

Now we discuss the situation when we append arbitrary element v of the field F = GF(q) to any one of the rows $S_q(3)$, $S_q(4)$, $S_q(5)$, . . . , $S_q(q - 3)$ of array $S_q^{/}$. Generally speaking it means that we append arbitrary element v of the field F = GF(q) to any row $S_q(k)$, $3 \le k \le q - 3$.

If v = 0, then because all a's and 1 are distinct and some non-zero elements of the field, then only a trivial 1×1 singular submatrix $[v]_{1\times 1} = [0]_{1\times 1}$ will be formed. It is because the array $S_q^{/}$ will become as (appending v = 0 to 4th row i.e. $S_q(3)$ row (say)):

Aryabhatta Journal of Mathematics and Informatics

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

1 1 1 1 1 1 1 a_3 a_1 a_2 a_{q-4} **a**_{q-3} 1 a_2 a_3 a_4 . . **a**_{q-3} a_{q-2} 1 v = 0a_{q-2} a_3 a_4 a_5 . S_q' : 1 a_{q-4} a_{q-3} a_{q-2} 1 **a**_{q-3} a_{q-2} Or, in general array S_{α}^{\prime} will be (by appending v to row $S_{\alpha}^{\prime}(k)$, $3 \le k \le q - 3$): . 1 1 1 1 1. 1 1 a₃ . . . a_1 a₂ a_{q-4} a_{q-3} 1 a_4 a_2 a3 . . . a_{q-3} a_{q-2} 1 a_3 a_5 a_{q-2} a_4 . S_q' : v = 0 1 a_k a_{k+1} a_{k+2} . 1 a_{q-4} a_{q-3} a_{q-2} 1 a_{q-3} a_{q-2}

Now let v \neq 0. Because there is symmetry between rows and columns of $S_{\alpha}^{/}$, therefore without any loss of generality, we take $k \le (q - 3) / 2$ when q is odd, and $k \le q / 2$ when q is even. Let $L = \{1\} \cup \{a_i : k\}$ $\leq i \leq (q - 2)$. So clearly L consists of all the elements of row $S_{\alpha}(k)$.

If v belongs to L, i.e. v can be any one of a_3 , a_4 , a_5 , . . . , a_{0-3} , and 1, say v = a_k or 1, then array S_{α}^{\prime} will become as:

1 1 1 1 1 1 . . . 1 a_1 **a**₃ . . a_2 . a_{q-4} a_{q-3} 1 a_2 a_3 a_4 a_{q-3} a_{q-2} 1 a_3 a_4 a_5 a_{q-2} S_{α}' : 1 ak a_{k+1} a_{k+2} . $v (= a_k \text{ or } 1)$. 1 a_{q-4} a_{q-3} a_{q-2} 1 a_{q-3} a_{q-2} Therefore, we shall get a submatrix of the form $\begin{bmatrix} 1 & 1 \\ a_k & a_k \end{bmatrix}$ or $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

, which is clearly singular.

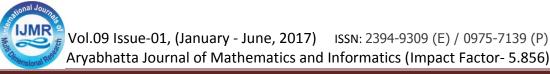
Now let v does not belong to L. Because 1, a₁, a₂, . . . , a_{q-2} exhaust all non-zero elements of the field, therefore $v = a_r$, $1 \le r < k$ (i.e. v can be of any of a_1 and a_2).

Now q can be odd or even.

Case 1 (When q is odd):

We consider all the unordered pairs $\{b_1, b_2\}$ of distinct elements of field F such that $b_1 + b_2 = 2v = 2 a_r$ (because $v = a_r$). Now cardinality of $L = 1 + \{(q - 2) - k + 1\} = q - k$. Because the case of q being odd is being discussed, where it has been assumed that $k \le (q-3)/2$ i.e. $-k \ge -(q-3)/2$ i.e. $q-k \ge -(q-3)/2$ q - (q - 3) / 2 i.e. $q - k \ge (2q - q + 3) / 2$ i.e. $q - k \ge (q + 3) / 2$. Therefore cardinality of $L = q - k \ge (q + 3) / 2$

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics



2. So, at least one such pair of the type $\{b_1, b_2\}$ such that $b_1 + b_2 = 2v = 2 a_r$, can be found out among elements of L.

 $\label{eq:such a pair is either of the form $\{1, a_j\}, k \leq j \leq (q-2)$ or is of the form $\{a_i, a_j\}$, $k \leq i < j \leq (q-2)$.}$

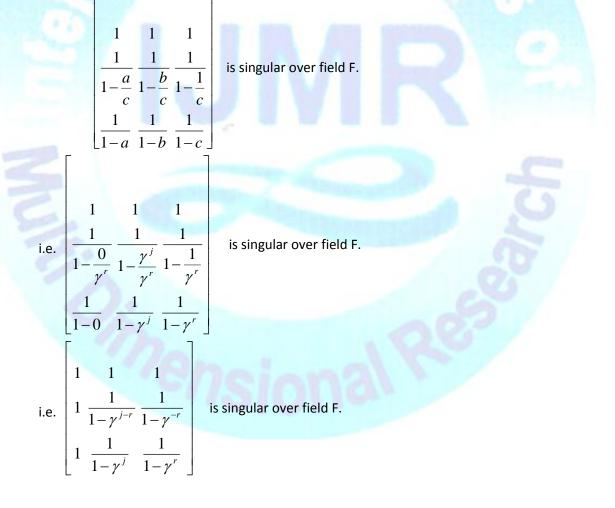
When this pair is of the form {1, a_j }, $k \le j \le (q - 2)$, then $1 + a_j = 2v = 2a_r$. Now condition of Lemma is $\frac{1}{1-a} + \frac{1}{1-b} = \frac{2}{1-c}$, where a, b, c are distinct elements of field F - {1}. Take a = 0, $b = \gamma^j$, $c = \gamma^r$

. Putting these in the above condition of Lemma, we obtain:

$$\frac{1}{1-0} + \frac{1}{1-\gamma^{j}} = \frac{2}{1-\gamma^{r}} \quad \text{i.e. } 1/1 + a_{j} = 2 \text{ (a_r)}$$

[because $a_i = \frac{1}{1 - \gamma^i}$, $1 \le i \le (q - 2)$, so for an arbitrary primitive element γ of the field

= GF(q), j satisfies $k \le j \le (q - 2)$, r satisfies 1 < r < k]. So, we have $1 + a_j = 2 a_r$, which is true. Therefore condition of Lemma is satisfied. Hence by Lemma, the matrix:



Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics <u>http://www.ijmr.net.in</u> email id- irjmss@gmail.com F

Г

i.e.
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & \frac{1}{1-\gamma^{j-r}} & \frac{1}{1-(1)\gamma^{-r}} \\ 1 & \frac{1}{1-\gamma^{j}} & \frac{1}{1-\gamma^{r}} \end{bmatrix}$$
 is singular over field F.
i.e.
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & \frac{1}{1-\gamma^{j-r}} & \frac{1}{1-(\gamma^{q-1})\gamma^{-r}} \\ 1 & \frac{1}{1-\gamma^{j}} & \frac{1}{1-\gamma^{r}} \end{bmatrix}$$
 is singular over field F.

٦

[because F = GF(q) is cyclic multiplicative group, therefore if its primitive element (generator) is γ , then $\gamma^{q-1} = e$ (multiplicative identity element of field F = GF(q)) is 1 (Vasishtha and Vasishtha (2006))].

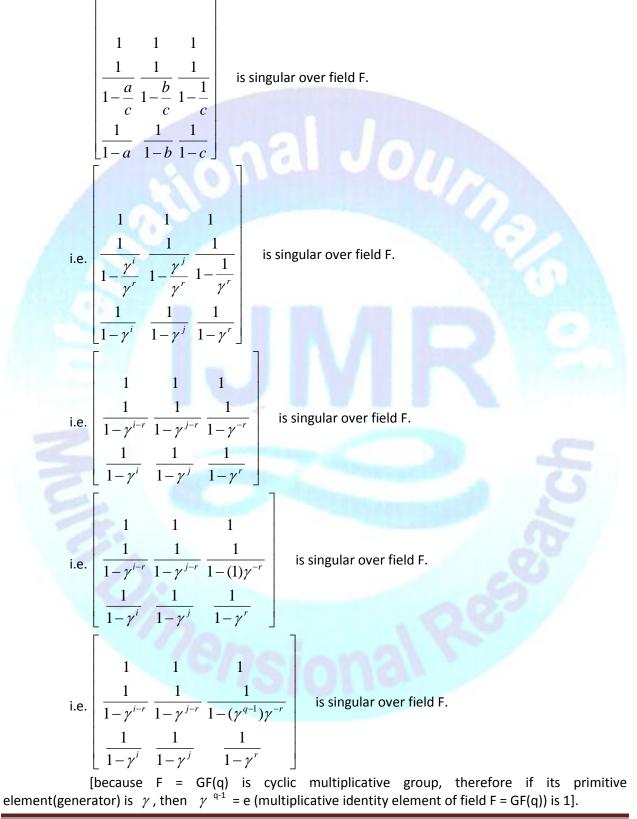
i.e.
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & \frac{1}{1-\gamma^{j-r}} & \frac{1}{1-\gamma^{q-1-r}} \\ 1 & \frac{1}{1-\gamma^{j}} & \frac{1}{1-\gamma^{r}} \end{bmatrix}$$
 is singular over field F.
i.e.
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & a_{j-r} & a_{q-1-r} \\ 1 & a_{j} & a_{r}(=\nu) \end{bmatrix}$$
 is singular over field F.
$$\begin{bmatrix} because a_{i} = \frac{1}{1-\gamma^{i}} , 1 \le i \le (q-2) \end{bmatrix}$$

When the pair is of the form {a_i, a_j}, $k \le i < j \le (q - 2)$, then $a_i + a_j = 2 v = a_r$. We take $a = \gamma^i$, $b = \gamma^j$, $c = \gamma^r$. Putting these in the condition of Lemma, we obtain: $\frac{1}{1-a} + \frac{1}{1-b} = \frac{2}{1-c}$, which implies $\frac{1}{1-\gamma^i} + \frac{1}{1-\gamma^j} = \frac{2}{1-\gamma^r}$ i.e. $a_i + a_j = 2 a_r$ [because $a_i = \frac{1}{1-\gamma^i}$, $1 \le i \le (q - 2)$, for an arbitrary primitive element γ of the field F = GF(q), i satisfies $k \le i \le (q - 2)$, r satisfies $1 \le r \le k$]. So, we have $1 + a_i = 2 a_r$, which is true. Therefore condition

j satisfies $k \le j \le (q - 2)$, r satisfies 1 < r < k]. So, we have $1 + a_j = 2 a_r$, which is true. Therefore condition of Lemma is satisfied. Hence by Lemma, the matrix:

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Aryabhatta Journal of Mathematics and Informatics



Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Aryabhatta Journal of Mathematics and Informatics

IJMR 5

i.e. $\begin{bmatrix} 1 & 1 & 1 \\ \frac{1}{1-\gamma^{i-r}} & \frac{1}{1-\gamma^{j-r}} & \frac{1}{1-\gamma^{q-1-r}} \\ \frac{1}{1-\gamma^{i}} & \frac{1}{1-\gamma^{j}} & \frac{1}{1-\gamma^{r}} \end{bmatrix}$ is singular over field F. *i.e.* $\begin{bmatrix} 1 & 1 & 1 \\ a_{i-r} & a_{j-r} & a_{q-1-r} \\ a_{i} & a_{j} & a_{r}(=\nu) \end{bmatrix}$ is singular over field F.

[because $a_i = \frac{1}{1 - \gamma^i}$, $1 \le i \le (q - 2)$, $v = a_r$, 1 < r < k]

Case 2 (When q is even):

When k = 3: Then L =
$$\{1\}U\{a_i : k \le i \le (q - 2)\} = \{1\}U\{a_i : 3 \le i \le (q - 2)\}$$

Therefore, L contains all the non-zero elements of the field F = GF(q), except a_1 , a_2 . So, the only non-zero elements of the field F, which are left outside L are a_1 , a_2 .

Now if we append $v = a_1$ or $v = a_2$ to row $S_q(3)$, we will get:

Therefore, if we append $v = a_1$ or $v = a_2$ to row $S_q(3)$, we will never get a singular submatrix.

Further we see that by appending $v = a_1$ or $v = a_2$ to row $S_q(3)$, we will get two maximal $4 \times (q - 2)$ rectangles:

 $\begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 & 1 \\ 1 & a_1 & a_2 & a_3 & \dots & a_{q-4} & a_{q-3} \\ 1 & a_2 & a_3 & a_4 & \dots & a_{q-3} & a_{q-2} \\ 1 & a_3 & a_4 & a_5 & \dots & a_{q-2} & a_1(=v) \end{bmatrix}_{4 \times (q-2)} \text{ and } \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 & 1 \\ 1 & a_1 & a_2 & a_3 & \dots & a_{q-4} & a_{q-3} \\ 1 & a_2 & a_3 & a_4 & \dots & a_{q-3} & a_{q-2} \\ 1 & a_3 & a_4 & a_5 & \dots & a_{q-2} & a_1(=v) \end{bmatrix}_{4 \times (q-2)}$

Combining these two $4 \times (q - 2)$ rectangles with this I_4 (identity matrix of order 4×4), we obtain:

	1 1	1000
$1 a_1 a_2 a_3$	$\ldots a_{q-4} a_{q-3}$	0100
$1 a_2 a_3 a_4$	$a_{q-3} a_{q-2}$	0 0 1 0
$\begin{bmatrix} 1 & a_3 & a_4 & a_5 \end{bmatrix}$.	$a_{q-2} a_1(=v)$	$0 \ 0 \ 0 \ 1 \bigg _{4 \times (q+2)}$

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics

Vol.09 Issue-01, (January - June, 2017) ISSN: 2394-9309 (E) / 0975-7139 (P) Aryabhatta Journal of Mathematics and Informatics (Impact Factor- 5.856) [Here $k \times n = 4 \times (q +$ 2). Therefore k = 4 and n = q + 2, so d = n - k + 1 = (q + 2) - 4 + 1 = q - 1]. and [Here $k \times n = 4 \times (q + 2)$. Therefore k = 4 and n = q + 2, so d = n - k + 1 = (q + 2) - 4 + 1 = q - 1]. These two rectangles form generator matrices for triply extended (q + 2, 4, q - 1) MDS codes. If we append $v = a_1$ or $v = a_2$ to row $S_q(q - 3)$, we get: 1 1 1 1 . . . 1 $a_2 a_3 \ldots a_{a-4} a_{a-3}$ 1 a_1 a_2 a_3 a_4 . . . a_{q-3} a_{q-2} 1 $1 a_3 a_4 a_5 \ldots a_{q-2}$ S_{α}^{\prime} : a_{a-4} a_{a-3} a_{a-2} 1 a_{q-3} a_{q-2} a_1 or a_2 (= v) 1 Therefore, appending $v = a_1$ or $v = a_2$ to row $S_{\alpha}(3)$, we will get two maximal $(q - 2) \times 4$ rectangles: 11 1 1] [1 1 1 1 $1 a_1$ a_3 $1 a_2 a_3 a_4$ $1 a_3 a_4 a_5$ $1 a_3 a_4 a_5$. . and $1 a_{q-4} a_{q-3} a_{q-2}$ $1 a_{q-3} a_{q-2} a_1$ $1 \ a_{q-3} \ a_{q-2} \ a_2 \ d_{(q-2)\times 4}$ Combining these two 4 × (q - 2) rectangles with this I_{q-2} (identity matrix of order $(q - 2) \times$ (q - 2)), we obtain:

and

1 1 1 1 1 0 0 . . . 0 $a_2 \quad a_3 \quad 0 \quad 1 \quad 0 \quad \dots \quad 0$ $1 a_1$ $1 a_2 a_3 a_4 0 0 1 \dots 0$ $a_4 a_5 0 0 0 \dots 0$ $1 a_{3}$ $1 \ a_{q-4} \ a_{q-3} \ a_{q-2} \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0$ $1 \ a_{a-3} \ a_{a-2} \ a_1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1$ $(q-2) \times (q+2)$

[Here $k \times n = (q - 2) \times (q + 2)$. Therefore k = q - 2 and n = q + 2, so d = n - k + 1-2) + 1 = 5].

]
1	a_1	a_2	a_3	0	1	0	•		0	
1	a_2	a_3	a_4	0	0	1			0	
			•							
1	a_{a-4}	a_{a-3}	a_{a-2}	0	0	0	0	0 1	0	
	-	-	-					0 0		
L	q-z	q-2	2							$(q-2)\times(q+2)$

[Here $k \times n = (q - 2) \times (q + 2)$. Therefore k = q - 2 and n = q + 2, so d = n - k + 1= (q + 2) - (q-2) + 1 = 5].

These two rectangles form generator matrices for triply extended (q + 2, q - 2, 5) MDS codes. When $4 \le k \le q / 2$, $q \ge 8$: Let $v = a_r$, $1 \le r < k$. Let $1 \le s < k$ and $s \ne r$. It should be noted that

because $4 \le k \le q/2$, so k > 3, and $1 \le s < k$, so such s exists. Now taking $a = \gamma^{-r}$, $a = \gamma^{-r}$, and utilising Lemma (part 2), where field F = GF(q) is of characteristic 2, we see that:

1	1	1	in the second second
1	1	1	Chain
1+ab	$1 + a^2$	$\overline{1+a}$	is singular over field F.
1	1	1	
1+b	1+a	$\frac{1}{1+-}$	
L		b_{\perp}	

[Note that because $1 \le r < k$, $1 \le s < k$, so $1 + 1 \le r + s < k + k$, i.e. $2 \le (r + s) < 2k$, i.e. $2 \le (r + s) <$ 2.q/2 (because 4 ≤ k ≤ q/2), i.e. 2 ≤ (r + s) < q, i.e, (r + s ≠ 0, and hence consequently ab = γ^{-s} . γ^{-r} =

= (q + 2) - (q

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics

 $= \gamma^{-(s+r)}$ \neq 1. Therefore, 1 + ab \neq 1 + 1 \neq 2(1) \neq 0 (because 2 is characteristic of field F = GF(q), so 2(a) = a + a = 0 for every a belonging to F = GF(q), hence 2(1) = 1 + 1 = 0, 1 belongs to F = GF(q)). Therefore, $\overline{1+ab}$ stands]. 1 1 $\frac{1}{1+\gamma^{-s}.\gamma^{-r}} \frac{1}{1+(\gamma^{-s})^2} \frac{1}{1+\gamma^{-s}}$ is singular over field F. i.e. $\frac{1}{1+\gamma^{-r}} \qquad \frac{1}{1+\gamma^{-s}}$ 1 $-(-1).\gamma^{-2s}$ $\overline{1-(-1).\gamma^{-s}}$ i.e. is singular over field F. $\frac{1}{1 - (-1).\gamma^{-s}} \quad \frac{1}{1 - (-1).\gamma}$ 1 $\frac{1}{1-(1).\gamma^{-s}.\gamma^{-r}} \frac{1}{1-(1).\gamma^{-2s}} \frac{1}{1-(1).\gamma^{-s}}$ is singular over field F. i.e. $\frac{1}{1-(1).\gamma^{-r}} \quad \frac{1}{1-(1).\gamma^{-s}} \quad \frac{1}{1-(1).\gamma^{r}}$ [Because characteristic of field F = GF(q) is smallest positive integar n such that n a = a + a + a + . . . upto n terms = 0 (zero element of field F for every a belonging to F, and because here characteristic of

up to n terms = 0 (zero element of field F for every a belonging to F, and because here characteristic of field F = GF(q) is 2, therefore, 2 a = a + a =0 implies a + a = 0, i.e. a = -a. Since 1 belongs to F = GF(q), so 1 = -1 (additive inverse of 1). Also because 1 belongs to F, so -1 belongs to F].

i.e.

$$\begin{bmatrix} 1 & 1 & 1 \\ \frac{1}{1-(\gamma^{q-1}).\gamma^{-s-r}} & \frac{1}{1-(\gamma^{q-1}).\gamma^{-2s}} & \frac{1}{1-(\gamma^{q-1}).\gamma^{-s}} \\ \frac{1}{1-(\gamma^{q-1}).\gamma^{-r}} & \frac{1}{1-(\gamma^{q-1}).\gamma^{-s}} & \frac{1}{1-\gamma^{r}} \end{bmatrix}$$
 is singular over field F.

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics <u>http://www.ijmr.net.in</u> email id- irjmss@gmail.com

[because F = GF(q) is cyclic multiplicative group, so if its generator (primitive element) is γ , then $\gamma^{q-1} = e = 1$ (multiplicative identity of field F].

 γ^{q-1-s}

i.e.

i.e.

$$\begin{bmatrix} 1 - \gamma^{q-1-s-r} & 1 - \gamma^{q} \\ \frac{1}{1 - \gamma^{q-1-r}} & \frac{1}{1 - \gamma^{q}} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ a_{q-1-r-s} & a_{q-1-2s} \end{bmatrix}$$

1 1

is singular over field F.

[because $a_i = \frac{1}{1 - v^i}$, $v = a_r$, $1 \le r < k$].

 a_{a-1-s}

IV. Conclusion

is singular over field F.

Roth and Seroussi have considered the array S_q over the finite field F = GF(q), and they constructed triply extended (q + 2, 3, q) and (q + 2, q - 1, 4) MDS codes. We have considered New Array $S_q^{/}$ over the finite field F = GF(q), and constructed triply extended (q + 2, 4, q - 1) MDS codes and triply extended (q + 2, q - 2, 5) MDS codes. So, corresponding to triply extended (q + 2, 3, q) MDS code, we have constructed triply extended (q + 2, 4, q - 1) MDS codes not increase, but we are successful in increasing number of message-symbols, which means that our code will transmit more number of message-symbols, and number of codewords within the code increases thereby enhancing the utility of the code. And corresponding to triply extended (q + 2, q - 1, 4) MDS codes, we have constructed triply extended (q + 2, q - 2, 5) MDS codes. Although block-length of the code increases thereby enhancing the utility of the code. And corresponding to triply extended (q + 2, q - 1, 4) MDS codes, we have constructed triply extended (q + 2, q - 2, 5) MDS codes. Although block-length of the code does not increase, and number of message-symbols do not increase, but we are successful in increasing minimum distance of the code as a result of which error-correcting-capability of the code is enhanced.

References

1. MacWilliams, F.J. and Sloane, N.J.A. (1977): "The Theory of Error-Correcting Codes". Amsterdam: North Holland, 1977.

2. Roman, Steven (1995): "Field Theory", New York; Splinger Verlag, ISBN 0-387-94408-7
3. Roth, Ron M. and Seroussi, Gadiel (1985): "On Generator Matrices of MDS Codes, IEEE Transactions on Information Theory, Vol. IT-31, No.6, November, 1985.

4. Singleton, R.C. (1964): "Maximum distance q-ary codes", IEEE Trans. Inform. Theory, Vol. IT-10, pp.116-118, 1964.

5. Vasishtha, A.R., and Vasishtha, A.K., (2006), *Modern Algebra*, Krishna Prakashan Media (P) Ltd. Meerut, 51st edition.

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Aryabhatta Journal of Mathematics and Informatics