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Abstract. One of the most important issues in fuzzy logic is the application 

of fuzzy logic in the field of algebraic structures‎, ‎because of this issue several 

articles have been published‎. ‎In this paper‎, ‎the important application of fuzzy 

rings to fuzzy G-subdomains are discussed‎, ‎on this regard‎, ‎some sources 

about fuzzy subrings‎, ‎fuzzy ideals and fuzzy subdomains have 

used‎. ‎According to these researches and by the concepts of the commutative 

rings which is presented by Kaplansky‎, ‎some fuzzy G-subdomains properties 

and related theorems are discussed‎. 
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1. Elementary Concepts of Fuzzy Algebraic Structures 

 

‎At first some operations on fuzzy subrings in a commutative ring R are introduced‎. ‎In addition 

the set of all fuzzy subsets on R denoted by F(R). 

Definition 1.1. [3] ‎Let R is a ring and       ‎‎ , ‎A is called a fuzzy subring of  R if for all 

      : ‎ 

‎i)                  ‎ ‎                 . 
‎ii)                 ‎ ‎                 ‎. 

Definition 1.2.A is a fuzzy subdomainof R[x]if:‎ 

‎i) A is a fuzzy subring of R[x].‎ 

‎ii) For all          if           then‎, ‎       or       .‎ 

‎It is obvious that                      ‎, ‎because A is also a fuzzy subring of R[x]‎. 

‎The set of all fuzzy subdomains of R[x] is denoted by            

Definition 1.3.‎For each           ‎, ‎the           |       ‎,          is called "t-

cut" or "t‎- level set"‎of R[x]‎. 

 

Theorem 1.1.‎           if and only if         ‎ ‎the t-level set of    is a subdomain of 

R[x]‎. 

 

forrP.mee‎ehe eeS‎ "1.2" of [2].                                                                                           □ 

Definition 4.1. A n nempty fuzzy subset A of R[x] is said to be  ideal if and only if , for any 

          

i)                   
ii)                . 
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Note 1.1.‎1) If R is a commutative ring then the condition of‎‎"ii"‎‎in Definition of‎ "1.4" ‎is 

equivalent to follows:‎ 

‎                             
 

‎2) The set of all fuzzy ideals on R[x] is denoted by         ‎. 
 

‎Theorem 1.2.‎Let           ‎, ‎then            if and only if     is an ideal of R[x]‎,  

                                   ‎ 
‎Where‎,               ‎  ‎       . 
‎ 

Proof. ‎Let             and          be such that‎: 

‎                             ‎ 
‎If           and        then‎:  

‎                ‎  ‎       ‎ 
‎And‎ 

‎              ‎ 
‎Hence    ‎  ‎     ‎ ‎Thus    is an ideal of     .‎ 
‎Conversely‎, ‎let    be an ideal of R[x] and‎                     ‎  ‎          ‎ 

‎Let       ‎    ‎       and                    ‎ ‎Then            and              Thus‎: 

‎        
Hence‎: 

‎(      )                  ‎        
Let         ‎,‎              ‎ ‎Then      ‎ ‎Thus       since    is an ideal of 

    ‎ ‎Hence (     )           ‎. ‎Thus A is a fuzzy ideal of     ‎.           □ 

‎‎ 

2. Fuzzy G-Subdomains‎ 

 

Remark 2.1. [6]Let Dbe an integral domain with quotient field K‎, ‎the following two statements 

are equivalent:‎ 

‎i) K is a finitely generated ring over D. 

‎ii) Kas a ring‎, ‎can be generated over D by one element‎. 

 

Definition 2.1.‎An integral domain satisfying either (hence both) of the statements in Remark‎ 

"2.1" ‎is called an G-domain‎.  

 

‎The name honors Oscar Goldman‎. ‎His paper [5] appeared at virtually the same time as a similar 

paper by Krull [7]‎. ‎Since Krull already has a class of rings named after him‎, ‎it seems advisable 

not to attempt to honor Krull in this connection‎. ‎Further results concerning the material in this 

section appear in Gilmer's paper [4]‎.  

 

Definition 2.2.‎Let A be a fuzzy subset of domain D‎, ‎the    is a subdomain of D if it is 

generated by the set of           ‎  ‎           ‎. ‎(i.e.‎,    is the intersection of all 

subdomains of D such that each of them contains the set of S)‎. ‎It is obvious that the    is the 

smallest subdomain of D in it contains S‎. 

 

Lemma‎2.4.‎[2] Let D is a domain‎, ‎the fuzzy subset A is a fuzzyG-subdomain of D if     as a 

subdomain of D itself is a G-domain.  
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Example 2.1.‎ Let   be the Rational numbers‎, ‎since for each prime number 2‎, ‎3‎, ...‎ the 

extended fields       ‎, ‎ [  ‎  ‎  ]‎     ‎ ‎   ‎             ‎   ‎   ‎    are G-domains‎. ‎If 

we define A(x) as the following‎: 

 

     

{
 
 
 

 
 
 

                                                                    

  ⁄    [  ]   

  ⁄                                                [     ]       

  ⁄                                 [        ]   [     ]

  ⁄                    [           ]   [        ]

                                  [             ]    

 

‎ 

 

‎Since for each        ‎ ,    is a G-domain as the follows: ‎ 

‎    [             ]    ‎    ⁄    [           ]‎     ‎   ⁄  

 [        ]       ⁄    [     ]‎   ‎   ⁄     [  ]             ‎Hence A is a fuzzyG-

subdomain of  . 

 

Lemma‎2.2.‎‎If A be a fuzzy G-subdomain of D with the quotient fuzzy subfield K for   ‎, ‎then 

For       we have‎: 

‎           ‎ 
 

 

 

‎Lemma 2.3. ‎Let A be a fuzzy subdomain of D and u be an element located on a domain 

containing   ‎     ‎         is a G-subdomain‎, ‎then‎: ‎A is a fuzzy G-subdomain of D and u is 

algebraic on   ‎ . 

 

Theorem 2.1.‎A is a fuzzy G-subdomain of D if and only if for each         ‎ ‎   is a G-

subdomain of   ‎ . 

 

Proof.‎Let A be a fuzzy G-subdomain of D and        ‎, ‎since          ‎    
  ‎, ‎then‎: ‎    ‎ ‎               ‎ ‎Now let        ‎ ‎              ‎                is a 

fuzzy subdomain of D‎, ‎then‎: 

‎‎              ‎  ‎                      ‎‎ 
‎              ‎ 

‎‎Furthermore‎: 

‎‎                 ‎  ‎                      ‎ 
‎‎‎    ‎   ‎      ‎   ‎     

‎Therefore    is a fuzzy subdomain of    and so it's a fuzzy subdomain of D.‎ 

‎In addition‎, ‎for the quotient field of K related to   ‎, ‎we have                      and 

since    is a subdomain of   ‎, ‎so  

           
              

Since by Lemma‎ "2.3" ‎u is algebraic on   , then    is a G-subdomain of   .‎ 

Conversely‎, ‎let    be a G‎ - ‎subdomain of   ‎, ‎        ‎.‎Since     ‎, ‎then       ‎  
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‎Let         and let        ‎                            ‎         
‎, ‎therefore 

                        
 is a subdomain of D and hence        

  

‎Now‎: 

‎                         ‎ 
‎Since A has the G‎- ‎structure property‎, ‎therefore A is a fuzzy G-subdomain of    and hence A is 

a fuzzy G-subdomain of D‎.                                                                                                    □ 

 

Theorem 2.2.‎Let A is a fuzzy G-subdomain of D with the quotient field K of    and let B be a 

fuzzy subring‎, ‎such that‎: 

‎       ‎ 

‎Then B is a fuzzy G-subdomain of D‎. 

 

Proof.‎Since             for some    ‎, ‎then                  ‎ , ‎therefore B is a 

fuzzy G-subdomain of D‎.                                                                                                        □ 

 

Theorem 2.3.‎Let  ‎  ‎       be arbitrary members‎, ‎if             is algebraic 

on  and   as a subring above     is finitely generated‎, ‎then: 

A is a fuzzy G-subdomain of D if and only if B is a fuzzy G-subdomain of D‎. 

 

Proof.‎Let K‎ , ‎L be the quotient fuzzy subfield of   ‎  ‎  ‎. ‎Suppose first that A is a fuzzy G-

subdomain‎, ‎say            ‎. ‎Then         is a fuzzy subdomain algebraic over the quotient 

field of K‎, ‎hence itself is a field‎, ‎necessarily equal to L‎.‎Thus B is an fuzzyG-subdomain of D.‎ 

Conversely‎,‎assume that B is a fuzzy G-subdomain of D‎, ‎          and 

                  ‎. ‎The elements    ‎ ‎           are algebraic over    and 

consequently satisfy equations with coefficients in    which lead off‎, ‎say‎: 

‎          ‎ 

‎    
                            ‎ 

‎Adjoin       
       

   to   ‎, ‎obtaining a subring    between    and K‎. ‎The field L is 

generated over    by          
  ‎. ‎Of course these elements generate L over   . ‎Now over 

   we have arranged that          
   are integral‎. ‎Hence L is integral over   .‎Therefore‎, 

‎   is a field‎, ‎necessarily K‎. ‎So K is a finitely generated ring over   and therefore A is afuzzy 

G-subdomain of D‎, ‎as required‎.                                                           □ 

 

Theroem‎2.1.‎‎Let A be a fuzzy subdomain of D and u is an element of a larger of   ‎ , ‎if       
is a G-domain‎, ‎then u is algebraic over     and A is a fuzzy G-subdomain of D‎. 

 

Proof.‎Let          is a G-domain if we define           ‎, ‎then  ‎ ‎    are algebraic on 

  ‎, ‎because for each     ‎ ,        ‎, ‎in especial case we have      ‎, ‎then‎: 

‎      ‎           ‎ 

‎So u is algebraic on    . 

‎On the other hand    as a ring on    is finitely generated‎, ‎therefore by Theorem‎ "2.3"    is G-

domain and hence A is fuzzy G-subdomain of D‎.                                                                 □ 

 

Theroem‎2.5.‎ ‎Let A and B are two fuzzy subdomains of D such that       and    finitely 

generated as a ring over     ‎and    is not algebraic over   ‎, ‎then B is not a fuzzy G-

subdomain of D‎. 
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Proof.‎Let         ‎ ‎                          are not algebraic over   . ‎By 

Theorem"2.4‎"          is not a G-domain. 

Put    
      ‎ ‎              ‎  ‎        

 is not a G-domain‎.‎Again‎, ‎consider 

    ‎ ‎        is not algebraic over    
 then    

    
       is never an G-domain and if 

     is not algebraic over    
‎ ‎then    

 is not a G-domain‎. ‎However    
 is not a G-

domain‎. ‎By repetition this process we obtain that   is not a G-domain and therefore B is not a 

fuzzy G-subdomain of D‎.                                                                                                  □ 

 

‎Lemma 2.4.‎Let R be a ring and A is a fuzzy subring of R,‎ 

‎1) If M is an ideal of       and satisfying in        ‎. ‎Let ‎‎u‎‎be ‎the image of x under the 

canonical homomorphism       
     

 
‎ ‎then‎: 

‎
     

 
       ‎ 

‎‎In addition‎, ‎if M is maximal in      ‎ , ‎then the       is a field. 

‎2) In general form‎, ‎if M is a maximal ideal of                      satisfy  

      ‎, ‎and if    is the image of    ‎  for each ‎‎    ‎ under the canonical 

homomorphism‎ 

‎
  

 
            ‎             ‎ 

‎‎Therefore‎ 

‎
  

 
                  ‎ 

‎ 

 

‎ 

‎Proof.‎1) At first‎, ‎the note        requires that        ‎  ‎     ‎ ‎which is a subring 

of        (say‎: ‎  )‎. ‎Now‎, 

‎                ∑        

 

   

  ‎     ‎ ‎     ‎ 

‎ 

   ∑            

 

   

  ‎     ‎ ‎    ‎  

‎ 

   ∑      (    )

 

   

  ‎     ‎ ‎    ‎  

‎ 

   ∑(   
   )

 

   

  ‎     ‎ ‎    ‎  

‎ 

 {∑        

 

   

  ‎          }  
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‎2) By similar argument that is expressed in part‎ "1" ‎and this fact that any element of     is of 

the form‎: 

‎    ̅     ∑              
     

  

              

                                 
  ‎ 

‎We have‎: 

‎                                       ‎ 
‎ 

   ∑            
                 

                               ‎‎ 

‎ 

   ∑                                 
                               ‎‎ 

‎ 

   ∑                (  
    )  (  

    )                               ‎‎ 

 

 { ∑              
     

  

              

                                 
                 } ‎ 

‎      ̅   ‎             ̅                              
  

 
‎ 

‎Which is proved the second part‎.                                                                                               □ 

‎ 

Theorem 2.6.‎The fuzzy subset A of an integral domain D is a fuzzy G-subdomain of D if and 

only if there exists in the polynomial ring       an ideal M which is maximal and satisfies 

      ‎  
 

‎Proof.‎Let A be a fuzzy G-subdomain of D‎, ‎we have‎:           ‎, ‎where K is a quotient field 

of   ‎. ‎Now we define the ring homomorphism as the following‎: 

 

‎ ‎  ‎               ‎ 
‎            ‎ 

‎‎ 

it is obvious that the image is all of K‎, ‎so the kernel M is maximal‎.  

‎Since the homomorphism is one to one on R‎, ‎therefore we have        ‎ 
‎Conversely‎, ‎let M be maximal ideal in       and satisfying in       ‎. ‎Denote the image 

of x in the natural homomorphism       
     

 
 by   ‎. ‎Then by lemma"2.3‎" ‎      is a field 

and therefore by Theorem‎ "2.4" ‎   is a G-domain and hence A is a fuzzy G-subdomain of D‎. 

 

It is suggested that further research in this direction is likely going to reveal additional 

properties of fuzzy G-ideals associated to fuzzy subdomains and thus contribute to our 

understanding of how such structures defines on the underlying fuzzy G-subdomains.‎ 
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