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Abstract.In this paper we introduced modified cosine sums and study its L1-
convergence and integrability under the class K of coefficients. It is shown that such 
type of modified cosine sums converge to the trigonometric series in L1 – metric 
without any additional condition where as the classical trigonometric partial sums may 
require additional conditions for L1 – convergence. Also a necessary and sufficient 
condition for the L1 – convergence of cosine series has been deduced as a corollary 
under the said class. 
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1  Introduction 
 
If a trigonometric series converges in L1 – norm to a function f L1, then it is the Fourier 
series of the function f but the converse of this is not true. Riesz( [1], Vol.II, Chap.VIII) gave 
a counter example that a Fourier series of a function f may not converge to f in L1-norm. 
This motivated many authors to study L1-convergence of trigonometric series by taking 
modified cosine and sine sums. It has been observed that these modified sum 
approximate their limits in the sense that they converge in L1-norm where as classical 
sums may not or they may require some additional condition. 
 
Many authors like Garrett and Stanojevi𝑐  [6, 7], Kumari and Ram [13], Bor [2, 3], Chen [4], 
Kaur, Bhatia and Ram [9] and Krasniqui [11, 12] introduced modified trigonometric sums 
and studied their integrability and L1-convergence under various classes. 
 
Let 

 𝑓 𝑥 =
𝑎0

2
+  𝑎𝑘𝑐𝑜𝑠𝑘𝑥∞

𝑘=1  (1.1) 

And 

 𝑆𝑛 𝑥 =
𝑎0

2
+  𝑎𝑘𝑐𝑜𝑠𝑘𝑥𝑛

𝑘=1  (1.2) 

 
be the cosine series and its sum. Using modified cosine sums 

𝑔𝑛 𝑥 =
1

2
 ∆𝑎𝑘 +   (∆𝑎𝑗 )𝑐𝑜𝑠𝑘𝑥

𝑛

𝑗=𝑘

𝑛

𝑘=1

𝑛

𝑘=0

 

ofGarett and Stanojevi𝑐  [5], Kaur and Bhatia [8] proved the following theorem under the 
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class of generalized semi-convex coefficients: 
TheoremA.If {an} is a generalized semi-convex null sequence, then gn(x) converges to f(x) 

in L1-metrix if and only if an log n = o(1), as n  ∞. 
 
Kumari and Ram [13] also introduced modified cosine and sine sums as 
 

𝑓𝑛 𝑥 =
𝑎0

2
+   ∆  

𝑎𝑗

𝑗
 𝑘𝑐𝑜𝑠𝑘𝑥

𝑛

𝑗 =𝑘

𝑛

𝑘=1

 

and 

𝑔𝑛 𝑥 =   ∆  
𝑎𝑗

𝑗
 𝑘𝑠𝑖𝑛𝑘𝑥

𝑛

𝑗 =𝑘

𝑛

𝑘=1

 

and studied their L1-convergence under the condition that the coefficient sequences {ak} 
belong to the classes S and R. They also deduced the results about L1-convergence of 
cosine and sine series as corollaries. 
Kaur [9] defined a new class K of coefficients in the following way: 
 
Definition:Let k be a positive real number. If 
 ak = o(1), k  ∞ (1.3) 
and 
  𝑘 ∆2𝑎𝑘−1 − ∆2𝑎𝑘+1 < ∞∞

𝑘=1 ,  (1.4) 
Any sequence satisfying (1.3) and (1.4) is said to belong to class K[9]. Also in [9] the class K 
is generalized in the following way: 
 
Definition: Let α be a positive real number. If (1.3) holds and 
 
  𝑘𝛼  ∆𝛼+1𝑎𝑘−1 − ∆𝛼+1𝑎𝑘+1 < ∞∞

𝑘=1 , (𝑎0 = 0) 
then we say that {an} belongs to the class Kα 
For α = 1, the class Kα reduces to the class K and the following theorem is proved. 
 
TheoremB.If {an} belongs to the class K, then the necessary and sufficient conditions for L1 
–convergence of the cosine series (1.1) is lim𝑛→∞ 𝑎𝑛 𝑙𝑜𝑔𝑛 = 0. 
 
Again in Kaur [10], the following modified sums are introduced 

𝐾𝑛 𝑥 =
1

2𝑠𝑖𝑛𝑥
  (∆𝑎𝑗−1 − ∆𝑎𝑗+1)𝑠𝑖𝑛𝑘𝑥

𝑛

𝑗=𝑘

𝑛

𝑘=1

 

and proved the following result: 
 
TheoremC.Let the sequence {ak} belongs to class Kα. Then Kn(x) converges to f(x) in L1-
norm. 
In this paper we introduce the following modified cosine sums 

𝑔𝑛 𝑥 =
𝑎0

2
+   ∆  

𝑎𝑗−1 − 𝑎𝑗+1

𝑗
 𝑘𝑐𝑜𝑠𝑘𝑥

𝑛

𝑗=𝑘

𝑛

𝑘=1

 

and study its integrability and L1-convergence under the class K and deduce the necessary 
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and sufficient condition. Our result can also be proved further under the generalized class 
Kα. In our main result, we use the concepts of Dirichlet’s Kernel and conjugate Dirichlet’s 
Kernel [14]. The nth partial sums of the series 

1

2
+  𝑐𝑜𝑠𝑘𝑥∞

𝑘=1 and 𝑠𝑖𝑛𝑘𝑥∞
𝑘=1  

Denoted by Dn(x) and 𝐷 𝑛 (𝑥) are called Dirichlet and conjugate Dirichlet Kernels 
respectively. 
Thus 

𝐷𝑛 𝑥 =
1

2
+ 𝑐𝑜𝑠𝑥 + 𝑐𝑜𝑠2𝑥 + ⋯ + 𝑐𝑜𝑠𝑛𝑥 =

𝑠𝑖𝑛  𝑛 +
1

2
 𝑥

2𝑠𝑖𝑛
𝑥

2

 

𝐷 𝑛 𝑥 = 𝑠𝑖𝑛𝑥 + 𝑠𝑖𝑛2𝑥 + ⋯ + 𝑠𝑖𝑛𝑛𝑥 =
𝑐𝑜𝑠

𝑥

2
− 𝑐𝑜𝑠  𝑛 +

1

2
 𝑥

2𝑠𝑖𝑛
𝑥

2

 

If x ≠ 0 (mod 2π), then 

|𝐷𝑛 𝑥 ≤
𝜋

2𝑥
, 𝑓𝑜𝑟 0 <  𝑥 ≤ 𝜋, 𝑎𝑛𝑑 𝐷 𝑛 𝑥  ≤

𝜋

𝑥
, 𝑓𝑜𝑟 0 <  𝑥 ≤ 𝜋 

Also we use the uniform estimate 

|𝐷𝑛 𝑥 | ≤ 𝑛 +
1

2
,for any x, and the estimate 

𝐿𝑛 =
1

𝜋
 |𝐷𝑛 𝑥 |𝑑𝑥 ≈

4

𝜋2 𝑙𝑜𝑔𝑛
𝜋

−𝜋
for Lebesgue constant 

We have similarly 

𝐿 𝑛 =
1

𝜋
 |𝐷 𝑛 𝑥 |𝑑𝑥 ≈ 𝑙𝑜𝑔𝑛

𝜋

−𝜋

 

Fej𝒆 r Kernel [14] The Fej𝑒 r Kernel is defined as 

𝐾𝑛 𝑥 =
1

𝑛+1
 𝐷𝑗 (𝑥)𝑛

𝑗 =0 , 

It has the following properties; 

(i) Kn(x)  0, (ii) 
1

𝜋
  𝐾𝑛 𝑥  = 1

𝜋

−𝜋
 

The conjugate Fej𝑒 r Kernel is defined as 

𝐾 𝑛 𝑥 =
1

𝑛 + 1
 𝐷 𝑗 (𝑥)

𝑛

𝑗 =0

 

Also we have 𝐾 𝑛 𝑥 > 0 for 0 < x < π and |𝐾 𝑛 𝑥 | <
𝑛

2
 for n = 1, 2, 3 

Also we have the important result 
𝐷 ′

𝑛 𝑥 =  𝑛 + 1 𝐷𝑛 𝑥 −  𝑛 + 1 𝐾𝑛 (𝑥) 
 

2 Main Result  
 
Theorem.If {an} belongs to the class K. Then ||f – gn|| = o(1), n  ∞ 
 
ProofConsider the modified sums 
 

gn(x) = 
𝑎0

2
+   ∆  

𝑎𝑗−1−𝑎𝑗+1

𝑗
 𝑘𝑐𝑜𝑠𝑘𝑥𝑛

𝑗 =𝑘
𝑛
𝑘=1  

= 
𝑎0

2
+   ∆  

𝑎𝑘−1−𝑎𝑘+1

𝑘
 + ∆  

𝑎𝑘−𝑎𝑘+2

𝑘+1
 + ∆  

𝑎𝑘+1−𝑎𝑘+3

𝑘+2
 + ⋯ + ∆  

𝑎𝑛−1−𝑎𝑛+1

𝑛
  𝑘𝑐𝑜𝑠𝑘𝑥𝑛

𝑘=1  



 Vol.09 Issue-01, (January - June, 2017)     ISSN: 2394-9309 (E) / 0975-7139 (P) 
Aryabhatta Journal of Mathematics and Informatics (Impact Factor- 5.856) 

Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 

Aryabhatta Journal of Mathematics and Informatics 
http://www.ijmr.net.in email id- irjmss@gmail.com  Page 828 

= 
𝑎0

2
+    

𝑎𝑘−1−𝑎𝑘+1

𝑘
−

𝑎𝑘−𝑎𝑘+2

𝑘+1
 +  

𝑎𝑘−𝑎𝑘+2

𝑘+1
−

𝑎𝑘+1−𝑎𝑘+3

𝑘+2
 + ⋯ +  

𝑎𝑛−1−𝑎𝑛 +1

𝑛
−𝑛

𝑘=1

𝑎𝑛−𝑎𝑛+2𝑛+1𝑘𝑐𝑜𝑠𝑘𝑥 

= 
𝑎0

2
+    

𝑎𝑘−1−𝑎𝑘+1

𝑘
 −  

𝑎𝑛−𝑎𝑛 +2

𝑛+1
  𝑘𝑐𝑜𝑠𝑘𝑥𝑛

𝑘=1  

=
𝑎0

2
+  (𝑎𝑘−1 − 𝑎𝑘+1)𝑐𝑜𝑠𝑘𝑥𝑛

𝑘=1 −  
𝑎𝑛 −𝑎𝑛 +2

𝑛+1
  𝑘𝑐𝑜𝑠𝑘𝑥𝑛

𝑘=1  

=
𝑎0

2
+  (𝑎𝑘−1 − 𝑎𝑘+1)𝑐𝑜𝑠𝑘𝑥𝑛

𝑘=1 −  
𝑎𝑛 −𝑎𝑛 +2

𝑛+1
 𝐷 ′

𝑛 𝑥  

=𝑆𝑛 𝑥 −  
𝑎𝑛 −𝑎𝑛+2

𝑛+1
 𝐷 ′

𝑛 𝑥               ……(2.1) 

Applying Abel’s Transformation, we get 

=  ∆ 𝑎𝑘−1 − 𝑎𝑘+1 𝐷𝑘 𝑥 +  𝑎𝑛−1 − 𝑎𝑛+1 𝐷𝑛 𝑥 −  
𝑎𝑛−𝑎𝑛 +2

𝑛+1
 𝐷 ′

𝑛 𝑥 𝑛−1
𝑘=1  

= ∆ 𝑎𝑘−1 − 𝑎𝑘+1 𝐷𝑘 𝑥 +  𝑎𝑛 − 𝑎𝑛+2 𝐷𝑛 𝑥 −  
𝑎𝑛 −𝑎𝑛 +2

𝑛+1
 𝐷 ′

𝑛 𝑥 𝑛
𝑘=1  

Again applying Abel’s transformation, we get 
= ∆2 𝑎𝑘−1 − 𝑎𝑘+1 (𝑘 + 1)𝐾

𝑘
 𝑥 +  𝑛 + 1  ∆𝑎𝑛−1 − ∆𝑎𝑛+1 𝐾𝑛 𝑥 +  𝑎𝑛 −𝑛−1

𝑘=1

𝑎𝑛+2𝐷𝑛𝑥−𝑎𝑛−𝑎𝑛+2𝑛+1𝐷′𝑛𝑥 

= ∆2 𝑎𝑘−1 − 𝑎𝑘+1 (𝑘 + 1)𝐾
𝑘
 𝑥 +  𝑛 + 1  ∆𝑎𝑛 − ∆𝑎𝑛+2 𝐾𝑛 𝑥 +  𝑎𝑛 −𝑛

𝑘=1

𝑎𝑛+2𝐷𝑛𝑥−𝑎𝑛−𝑎𝑛+2𝑛+1𝐷′𝑛𝑥 

Using the result 𝐷 
′
𝑛 𝑥  = (n+1)Dn(x) – (n+1)Kn(x), we get 

= ∆2 𝑎𝑘−1 − 𝑎𝑘+1 (𝑘 + 1)𝐾
𝑘
 𝑥 +  𝑛 + 1  ∆𝑎𝑛 − ∆𝑎𝑛+2 𝐾𝑛 𝑥 +  𝑎𝑛 −𝑛

𝑘=1

𝑎𝑛+2𝐷𝑛𝑥−𝑎𝑛−𝑎𝑛+2𝑛+1[(n+1)𝐷𝑛𝑥– (n+1)𝐾𝑛𝑥] 

= ∆2 𝑎𝑘−1 − 𝑎𝑘+1 (𝑘 + 1)𝐾
𝑘
 𝑥 +  𝑛 + 1  ∆𝑎𝑛 − ∆𝑎𝑛+2 𝐾𝑛 𝑥 +  𝑎𝑛 − 𝑎𝑛+2 𝐾𝑛 𝑥 𝑛

𝑘=1  

 
Thus 
 

  𝑓 − 𝑔𝑛   ≤  |
𝜋

0
 ∆2 𝑎𝑘−1 − 𝑎𝑘+1  𝑘 + 1 𝐾𝑘 𝑥 ∞

𝑘=𝑛+1  𝑑𝑥 +  𝑛 + 1  ∆𝑎𝑛 −

∆𝑎𝑛+2  |
𝜋

0
𝐾𝑛 𝑥  𝑑𝑥 + |𝑎𝑛 − 𝑎𝑛+2  |

𝜋

0
𝐾𝑛 𝑥  𝑑𝑥 …….        (2.2) 

 
Now 
 

 ∆𝑎𝑛 − ∆𝑎𝑛+2 =    ∆2𝑎𝑘 − ∆2𝑎𝑘+2 

∞

𝑘=𝑛

  

=   
𝑘

𝑘
 ∆2𝑎𝑘−1 − ∆2𝑎𝑘+2 

∞

𝑘=𝑛+1

  

=
1

𝑛 + 1
   ∆2𝑎𝑘−1 − ∆2𝑎𝑘+1 

∞

𝑘=𝑛+1

  

= 𝑜  
1

𝑛+1
 ……..(2.3) 

and also we know 

 |
𝜋

0
𝐾𝑛 𝑥  𝑑𝑥 ≤  |

𝜋

−𝜋
𝐾𝑛 𝑥  𝑑𝑥 = 𝜋 …….(2.4) 

 
Considering (2.3), (2.4) and our assumption that sequence {an} belongs to class K, we 
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have from (2.2)  

  𝑓 − 𝑔𝑛   = 𝑜 1 ,n ∞ 

 
Note:  The result of above Theorem 1 can also be prvoed for the generalised class Kα by 
applying Abel’s transformation α times to (2.1) 
 
Corollary. Let {ak} belongs to class K, then the necessary and sufficient condition for L1-
convergence of the cosine series (1.1) is 
|an – an+2| log n = o(1), n  ∞ 
 
 
Proof. We noticed that  

 |
𝜋

−𝜋

𝑓 𝑥 − 𝑆𝑛 𝑥 |𝑑𝑥 

≤  |
𝜋

−𝜋

𝑓 𝑥 − 𝑔𝑛 𝑥 |𝑑𝑥 +  |
𝜋

−𝜋

𝑔𝑛 𝑥 − 𝑆𝑛 𝑥 |𝑑𝑥 

≤  |
𝜋

−𝜋
𝑓 𝑥 − 𝑔𝑛 𝑥 |𝑑𝑥 +   

𝑎𝑛−𝑎𝑛+2

𝑛+1
𝐷 

′
𝑛 𝑥  

𝜋

−𝜋
𝑑𝑥 ……..(1) 

 

Since lim𝑛→∞  |
𝜋

−𝜋
𝑓 𝑥 − 𝑔𝑛 𝑥 |𝑑𝑥 = 0 by our theorem and 

 

  
𝑎𝑛 − 𝑎𝑛+2

𝑛 + 1
𝐷 

′
𝑛 𝑥  

𝜋

−𝜋

𝑑𝑥~ 𝑎𝑛 − 𝑎𝑛+2 log n as   𝐷 
′
𝑛 𝑥  𝑑𝑥~𝑛𝑙𝑜𝑔𝑛(𝑛 ≥ 2)

𝜋

−𝜋

 

 
Thus form (1). We have ||f – Sn|| = o(1) as n  ∞ 
 
Conversely, we have 
 

  
𝑎𝑛 − 𝑎𝑛+2

𝑛 + 1
𝐷 

′
𝑛 𝑥  

𝜋

−𝜋

𝑑𝑥 =  𝑔
𝑛
− 𝑆𝑛  

≤ ||f – gn|| + ||f – Sn|| 
Now as ||f – gn|| = o(1), n  ∞ by our Theorem 1 and 

||f – Sn|| = o(1), n  ∞ is given 
Hence ||f – Sn|| = o(1), n  ∞ ifflim𝑛→∞ 𝑎𝑛 − 𝑎𝑛+2 log n = 0 
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