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Abstract: 
 In this paper, we present a new two-step iterative method to solve the nonlinear equation   0f x   and 

discuss about its convergence. Few numerical examples are considered to show the efficiency of the new 
method in comparison with the other methods considered in this paper.  
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1.INTRODUCTION 

 
Many of the complex problems in Science and Engineering contains the function of nonlinear equation 
of the form 

  0f x                                                                                                                                                         (1.1) 

Where :f I R  for an open interval I is a scalar function. 

Let 1nx  be the root of the equation (1.1) i.e.,   0
1

f x
n




while   0
1

f x
n

 


. 

The classical quadratic convergent Newton’s method [3] for finding the root of “(1.1)” is 
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                                                                                                                                      (1.2)                                                                                           

 0,1,2,...n   

The third order two step Chebyshev’s method [4] is   
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 0,1,2,...n   

The third order variant of Chebyshev’s method [9] is  
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 0,1,2,...n   

In this paper, we present a two step variant of Chebyshev’s method in section 2. In section 3, the 
convergence criterion of the new method is discussed where as in the concluding section several 
numerical examples are considered to exhibit the efficiency of the developed method. 

 
II. SECOND DERIVATIVE FREE NEWTON’S VARIANT METHOD 

 
Following the basic assumption of Abbasbandy and Maheshweri[1, 2] and also others [5, 7], we consider 

the second degree Taylor’s expansion of  1
f x

n
 about xn is 
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(2.1) 
Where 
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x x hnn

 


 

 
 

       
 2

2
1 1 12 2

f x x f xn n n
f x x x f x x f x f x x f xn n n n n nn n n

   
                   

                                        

(2.2) 

Since, 
1

x
n

be the root of the equation “(1.1)” i.e.,   0
1

f x
n




then the “(2.2)” becomes 
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(2.3) 
The third order Newton’s variant method [8] for finding the root of “(2.3)” is  
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   in “(2.4)” gives the two step Newton’s variant 

method as  
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 0,1,2,...n   

The simplified form of “(2.5)” can be rewritten as  
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Expanding  
1

1 4 2n up to three terms i.e., up to 2
n , we get the required two step Newton’s variant 

method as  
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 0,1,2,...n   

 
III. CONVERGENCE CRITERIA 

 
Theorem 3.1.Let I  be a simple zero of a sufficiently differentiable function :f I R for an open 

interval I. Then, the new method that is defined by “(2.2)” has the third order convergence and satisfies 
the following error equation, 
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Where, 
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x
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 and xn n    

Proof: Let  be a simple zero of equation “(1.1)”. By the Taylor’s expansions  
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Dividing “(3.2)” by “(3.1)”, we have  

 
 

   2 2 3 42 0
2 2 3

f xn
c c c nn n n

f xn
    

 
 

             

                                                                                          (3.3) 

       2 3 422 3 22
f y f c c c on n n n       

  
                                                                                            (3.4) 

Dividing “(3.4)” by “(3.1)”, we obtain 
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(3.5) 
Adding ‘1’ on both sides to “(3.5)”, we have                                                                                                                                                        
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Multiplying “(3.3)” and “(3.6)”, we get 
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                                                                                                                            (3.8) 

Equation “(3.8)” establishes the third order convergence of the method that is defined by “(2.6)”. 
  
IV. NUMERICAL EXAMPLES 
 
We consider few numerical examples considered by [6, 7] and the method “(2.6)” is compared with 
themethods “(1.2)”, “(1.3)” and “(1.4)”. The computational results are tabulated below and the results 
are correct up to an error less than as indicated for each of the problems. 

Example 1.  Consider the following equation,   23 0xf x e x    . 

TABLE 1. 

The results obtained by three methods for solving   23 0xf x e x    with 0.5
0

x  and  0.5 20E   

 

Example 2.  Consider the following equation,   3 0xf x x e    

TABLE 2. 

The results obtained by four methods for solving   3 0xf x x e   with
0 1x   and  0.5 20E    

 
 
 
 
 
 
 
 

Formula No. of iterations (n) Root 

nx  

Newton 7 0.91000757248870907904 

Chebyshev --- DIVERGENT 

A Variant of Chebyshev 7 0.91000757248870907904 

New Method 6 0.91000757248870907904 

Formula No. of iterations (n) Root 

nx  

Newton 8 0.77288295914921017344 

Chebyshev 7 0.77288295914921017344 

A Variant of Chebyshev 7 0.77288295914921017344 

New Method 6 0.77288295914921017344 
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Example 3 .  Consider the following equation,   sin 0.5 0f x x x    

TABLE 3. 
The results obtained by four methods for solving   sin 0.5 0f x x x   with 3

0
x  and  0.5 20E    

 

Example 4.  Consider the following equation,   3 2 5 0f x x x     

TABLE 4. 

The results obtained by four methods for solving   3 2 5 0f x x x    with 3
0

x  and  0.5 20E    

 
 

 
 
 
 
 
 
 
 
 
Example 5.  Consider the following equation,   sin 0f x x   

TABLE 5. 
The results obtained by four methods for solving   sin 0f x x  with 0.5

0
x  and  0.5 20E    

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Formula No. of iterations 
(n) 

Root 

nx  

Newton 6 1.89549426703398109184 

Chebyshev 5 1.89549426703398109184 

A Variant of Chebyshev 5 1.89549426703398109184 

New Method 4 1.89549426703398109184 

Formula No. of iterations (n) Root 

nx  

Newton 7 2.09455148154232668160 

Chebyshev 5 2.09455148154232668160 

A Variant of Chebyshev 5 2.09455148154232668160 

New Method 4 2.09455148154232668160 

Formula No. of iterations (n) Root 

nx  

Newton 5 0 

Chebyshev 4 0 

A Variant of Chebyshev 4 0 

New Method 3 0 
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V. CONCLUSION 
 

With the number of iterations tabulated for each of the methods for five non-linear equations, we 
conclude that the method (2.6) is efficient one compared to the methods considered in this paper. 
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