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Abstract: Let be a polynomial of degree n . Concerning the estimate for the maximum 

modulus of a polynomial on the circle , in terms of its degree and the maximum modulus 

on the unit circle, we have several well known results for the case 1R  and 1r  respectively. In this 

paper, we have obtained bounds for the maximum modulus of polynomials having some zeros in the 

interior of a circle of radius 1R . Our result improves as well as generalizes the bounds obtained by 

other authors for the same class of polynomials. 

 Key Words: Polynomials, Inequalities, Complex domain, zeros. 

2000 AMS Subject Classification: 30A10, 30C10, 30C15. 

1.  INTRODUCTION AND STATEMENT OF RESULTS 

         Let be a polynomial of degree n . Concerning the estimate for the maximum 

modulus of a polynomial on the circle , in terms of its degree and the maximum modulus 

on the unit circle, we have the following well known results.  

         Theorem A  If is a polynomial of degree n, then for every 1R , 

                                        )(max)(max
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The result is best possible and  extremal polynomial is 
nzzp )( ,  0  being  a complex number. 

Inequality (1.1.) is a simple deduction from the maximum modulus principle (for reference see [7] 

or [6]). 

For the case 1r  we have the following result. 
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Theorem B.  If is a polynomial of degree n, then for 1r , 

                                          )(max)(max
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zprzp
z
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 .                                           (1.2.) 

The result is best possible and  extremal polynomial is ,  0  being  a complex number. 

Inequality (1.2.) is due to Zarantonello and Varga [9].  

Theorem C.  If is a polynomial of degree n, having no zeros in , then for 1r , 
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The result is best possible and  equality in inequality (1.3) holds for 
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The inequality (1.1) is due to Ankeny and Rivlin [1] and inequality (1.3) is due to Rivlin [8]. 

For the case
 10   ,  

 we have the following result due to Aziz [2].      

Theorem D. Let 
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.                                    (1.4) 

The result is sharp and equality in (1.4) is attained for Cckzeczp ni  )0(,)()( 
 and R . 

The following result is due to Jain [5]. 

 

          Theorem E.  If be a polynomial of degree n, having all its zeros in 1,  kkz , then for 

2kRk  , 
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where s(<n) is the order of a possible zero of  p(z)  at origin. 

In this paper, we prove the following generalization of Theorem E by involving the coefficients of the 

polynomial 
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Theorem 1. Let 
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  where s is the order of a possible zero of p(z)  at the origin .                                                                                                                                      

2. LEMMAS. 

For the proof of the above theorems, we need the following lemmas. 

Lemma 2.1. If 
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 is a polynomial of degree n, having no zeros in , 
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The above lemma is due to Govil, Rahman and Schmeisser [4]. 

The above lemma is due to Dewan, Singh and Yadav [3]. 

Lemma 2.2.  If   
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Lemma 2.3. If 
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Proof of Lemma 2.3. Since )(zp does not vanish in ,kz  1k , the polynomial 

)()( rzpzT   does not vanish in 1, 
r

k

r

k
z , therefore applying Lemma 2.2 to )(zT  , we get 
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Again as )(' zp  is a polynomial of degree 1n , by maximum modulus principle [6, p. 158, problem III 

269], we have     
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Combining inequalities (2.4) and (2.5),  we have 
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Now, for  20  , we have 
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This is equivalent to 

         

 

.),(
2)(

)

),(
}2){(

])[(]2)[(
,

1
2

0
22

10

2

1
2

0
221

1
2

01
2

0
221

kpm
arkankr

aran

k

rR

rpM
arkankrr

akranrRarkankrr
RpM

n

nn

n

nnn





























 

From which the proof of Lemma 2.3 follows.                                                                                                                           

3. PROOF OF THE MAIN THEOREM 

 

Proof of the Theorem 1.  The polynomial  zp  of degree n has all its zeros in 1,  kkz , 

with s-fold zeros at the origin, implies that the polynomial )/1()( zpzzq n  is of degree (n-s) and has 
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or equivalently
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The above inequality is equivalent to  
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Now replacing r  by 
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                                                                                              for 
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The above inequality on simplification reduces to 
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This completes the proof of Theorem 1. 
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