CHEMINFORMATICS METHOD OF PREDITING THE BIOLOGICAL ACTIVITY OF PHYTOCHEMICALS BASED ON THEIR STRUCTURE

R. Prathipa

Assistant Professor, Department of Chemistry, Sree Sakthi Engineering College, Karamadai, Coimbatore – 641 035, Tamilnadu, India

Abstract

Cheminformatics interpretation of biological properties of selected phytochemical substances. Phytochemical substances are naturally occurring organic molecules, produced by plants and organisms related to plants. Phytochemicals are often glycosides, terpenes, alkaloids and phenolics. These compounds are produced in considerable amounts in leaves, roots flowers etc., toward off parasitic infection and to determine the animals from browsing. Testing for handful of biological screening would not expose the real property of the substance in question. Therefore the cheminformatic method of predicting the biological activity becomes a necessity. Further the Quantitative Structure activity Relationship method fine-tunes the predicted biological activities to the physicochemical properties of the molecules, which would be very useful in escalating potency and activity of the compound during chemical synthesis. More potent synthetic compounds than natural one can be created in the laboratory. A sample of 100 phytochemical substances reported in the literature is computationally analyzed to render their possible biological properties and attribute their Structures to their respective biological properties. A group of fungi popularly known as wood rot fungi scientifically called Aphyllophorales are known to be therapeutically active. Members of this fungi are wildly used the Chinese traditional medicines. Secondary metabolites of this group of organisms are reported in the literature. A set of 100 compounds was chosen here for cheminformatic analysis. The cheminformatics analysis involves theoretical prediction of electronic, hydropathic and steric properties of the chemicals and correlating these properties to their predicted biological properties statistically. Cluster analysis, linear and multiple regression analysis are performed. In principle the structure of a chemical compound is related to its activity. The drug like properties of a compound may rest upon its chemical substituent, which in turn would rely upon its physicochemical properties.

Once the real substituent and its descriptor are correlated to the biological activity, changing the descriptor would change in the potency and activity of the compounds biological activity.

1. Introduction

The QSAR is highly predictive and statistical. It tries to correlate certain physical and chemical properties to its biological activities. But biological activity of a compound is not defined by the physicochemical properties alone. The absorption, transport and metabolism of the substance in vivo condition are controlled by several unpredictable factors. Therefore the QSAR analysis though very powerful in prediction in establishing the inter relationship of structure to property, the application in vivo rest upon clinical trials. But still the cheminformatic approach eliminates the initial phase of screening the chemicals in the laboratories. Several thousands of compounds can be screened computationally in few hours.

1.1. Cheminformatics:

Cheminformatics is transforming the data into information and information into knowledge for the intended purpose of making better decisions faster in the area of drug lead identification and optimization.

1.1.1 File Formats:

The chemical structure and descriptors data are maintained in certain file formats so that all computer systems and operating systems can recognize them and render the appropriate details on the computer screen and calculations.

Chemical structures are represented *In silico* using formats such as XML based chemical Markup language or SMILES. These representations are often used for storage in large chemical databases.

1.1.2 Molecular Similarity:

One of the several important tasks in cheminformatics is to search the database for similar molecule. The search engine must be in a position to retrieve congeneric or identical molecule to the query molecule. Apart from single line notations the following features are employed in the search. Some of the methods applied are like 2D topology, 3D configuration, Physical properties analysis and clustering

2. Data Source

Biologically active Phytochemicals, are from a group of fungi known as Aphyllophorales. These are commonly called Polypores. Eighty-eight phytochemical substances originated from 34 species of wood rotting fungi are chosen for cheminformatic analysis. Phytochemicals chosen for cheminformatic analysis rendered into 2D and 3D files. The structures are drawn by using free stand alone software known as Chemsketch. The structures are cleaned and 3D atomic coordinates are created using the same software and saved as MD. mol file.

PASS prediction server is capable of predicting the biological effects and mechanism of action of the compounds based on the structural features. The SMILE notation of the compounds is submitted to the online server one at time. The PASS results provide us two values for the said compound. These are Pa and Pi values.

Pa indicates the Probability of predicted activity and Pi indicates the Probability of Predicted absence of said activity. The difference in the Pa and Pi values gives us the actual activity value. It is said that valued above 5-7 are reliable. PASS results for cyclophellitol is shown below.

PASS Result Cyclophellitol taken from Phellinus sp.,

<u>Effects</u> <u>Mechanism</u>

23 Substructure descriptors; 0 new.

Glucosylceramidase inhibitor

67 Possible activities at Pa > 50%

Pa Pi for Activity:

- 0.943 0.005 Phosphatase inhibitor
- 0.904 0.022 Hematotoxic
- 0.878 0.005 Glycerol-1-phosphatase inhibitor

EFFECTS

- 0.535 0.019 Antiviral
- 0.535 0.01 Antiviral (Herpes)
- 0.515 0.035 Immunostimulant

IJMSS Vol.03 Issue-02, (February, 2015) ISSN: 2321-1784 International Journal in Management and Social Science (Impact Factor- 3.25)										
0.515	0.025	Antiviral (Influenza)								
0.515	0.035	Antivital (Influenza)								
0.515	0.035	Immunostimulant								
0.515	0.031	Antiviral (HIV)								
	MECHANISMS									
0.943	0.005	Phosphatase inhibitor								
0.943	0.005	Antineoplastic								
0.878	0.005	Glycerol-1-phosphatase inhibitor								
0.863 pospha	0.008 atidyltran	CDP-diacylglycerol-glycerol-3-phosphate 3- sferaseinhibitor								
0.855	0.003	Chitinase inhibitor								

Among 88 compounds when analyzed using PASS prediction values only 33 compounds show phosphatase activity and 14 compounds possess limonene synthestase inhibition activity among them some are listed in Table 1 which is shown below.

Types	Name of the molecule	PASS Prediction Result	Class generated for activity
non ity	3 Acetyloxylanosta 8,24 Dien 21 oic Acid.mol	0.866	Medium
aone Activ	Bisabolol.mol	0.945	High
nil A	Ganodermadiol.mol	0.802	Low
ase y	Albaconol.mol	0.85	Medium
pha1 tivit	Corolin.mol	0.938	High
Phos	Cyclophellitol.mol	0.769	Low

Table 1

Cluster analysis of molecules showing limnonene synthetase inhibitor activity based on certain physical parameters

Regression analysis of limonene synthestase inhibition activity with varying molecular descriptors

The 14 compounds possessing limonene synthestase activity are segregated into 2 clusters as identified in cluster analysis experiment (Figure 1) and were loaded into the TSAR as a separate project. Eleven parameters encompassing steric, lipophilic and electronic parameters are calculated. Regression analysis was carried out and the results are presented in the table 2.

Table 3, are results of correlation between 11 parameters and biological activity of two groups of compounds for cluster 1.

It is clear that log P and VAMP total energy parameters correlate well with limonene synthestase inhibition activity. The figure 2 & 3, represents the correlation graph of members of the group positive correlation is evident.

It can be concluded that the log P and Total energy of the compounds are the major contributing factors for the said biological properties.

Observing the correlation matrix of the cluster 2 shown in table 4, and figure 6, further add to our previous conclusion that log p value has positive influence on the compounds said biological activity.

Table2: correlation between the eight physical parameters andlimnonene synthetase inhibitor activity.

1	V 1 ·	X 2 ·	¥3 ·	V 4 ·	¥5 ·	¥6 ·	¥7 ·	V 8 ·	V ·	
	AI.	A2.	AJ.	A4. Number o	AJ . Number o	A0. Melecular	A7. Total	Ao . Moloculos	1 . limnonana aativity	
	Volumo	(Whole M	Defrectivi	(Whole M	Whole M	Moss	Lingle	Surface A	minionene activity	
	Whole M		(Whole M			Whole M	Cipole M	(Whole Melecule)		
V 1 ·	(whole wh		(whole w	olecule)				(whole wh	iolecule)	
AI. Molecular										
Volumo										
Whole M	1	0.67614	0.96308	0.47034	0.46541	0.97274	0.04483	0.98663	0 10941	
\mathbf{x}_2	1	0.07014	0.90508	0.47034	0.40541	0.97274	-0.04485	0.98005	-0.10941	
log P										
(Whole M	0.67614	1	0 66907	0 39023	-0.01111	0 55267	-0.16031	0.68047	0.365	
X3 ·	0.07014		0.00907	0.37023	0.01111	0.55207	0.10051	0.00047	0.505	
Molecular										
Refractivi										
(Whole N	0.96308	0.66907	1	0.41228	0 35891	0 97403	0.07398	0.96548	-0 15165	
X4 :	0.70500	0.00207	-	0111220	0.00071	0.77102	0.07570	0.705.10	0.110 100	
Number o										
(Whole N	0.47034	0.39023	0.41228	1	0.54085	0.45422	-0.07932	0.50551	-0.31829	
X5 :										
Number o										
(Whole M	0.46541	-0.01111	0.35891	0.54085	1	0.52977	0.10332	0.50756	-0.35773	
X6 :										
Molecular	I. I									
Mass										
(Whole M	0.97274	0.55267	0.97403	0.45422	0.52977	1	0.05364	0.96959	-0.21781	
X7 :										
Total										
Lipole										
(Whole M	-0.04483	-0.16031	0.07398	-0.07932	0.10332	0.05364	1	0.01413	-0.12833	
X8 :										
Molecular	I									
Surface A										
(Whole M	0.98663	0.68047	0.96548	0.50551	0.50756	0.96959	0.01413	1	-0.1561	
Y :										
limnonen	-0.10941	0.365	-0.15165	-0.31829	-0.35773	-0.21781	-0.12833	-0.1561	1	

	X1:	X2:	X3 :	X4 :	Y :
	VAMP	VAMP	VAMP	VAMP	limnonene activity
	Total Ener	Total Mol	Ionization	Nuclear E	nergy
	(Whole M	(Whole M	(Whole M	(Whole M	lolecule)
X1 :					
VAMP					
Total Ene					
(Whole M	1	-	0.2773	-0.97093	0.15168
X2 :					
VAMP					
Total Mol					
(Whole M	-	-	-	-	-
X3 :					
VAMP					
Ionization					
(Whole M	0.2773	-	1	-0.27964	-0.0057711
X4 :					
VAMP					
Nuclear E					
(Whole M	-0.97093	-	-0.27964	1	-0.11788
Y :					
limnonene	0.15168	-	-0.00577	-0.11788	1

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories International Journal in Management and Social Science <u>http://www.ijmr.net.in</u> email id- irjmss@gmail.com Page 670

Table 3: Correlation between eleven Physical Parameters andLimnonene Synthetase Inhibitor Activity for Cluster 1.

	X 1 ·	X 2 ·	¥3 ·	X 4 ·	X5 ·	X6 ·	¥7 ·	X8 ·	X0 ·	X10 ·	X11 ·	V ·
	AT. Molecula	Iog P	AJ. Molecular	A4. Number o	AJ. Number o	A0. Molecular	A/. Total	Ao . Molecular	VAMP	VAMP	VAMP	1. limnonene activity
	Volume	(Whole M	Refractivi	(Whole M	(Whole M	Mass	Lipole	Surface A	Total Ene	Ionization	Nuclear Energy	minionene activity
	(Whole M		(Whole M			(Whole M	(Whole M	(Whole M	(Whole M	(Whole M	(Whole Molecule)	
V 1 ·	(whole iv	loiceule)	(whole w	olecule)		(whole wh	(whole iv	(whole wh	(whole w	(whole w	(whole wolecule	,
A1. Moloculor												
Volumo	L											
Whole M		0.76992	0.05096	0.00024	0 6 4 0 4 6	0.06714	0 11272	0.00606	0.06228	0 17719	0.02721	0.070548
V2.		0.70882	0.95080	0.07034	0.04040	0.90714	-0.11273	0.99000	-0.90228	-0.17718	0.93721	-0.070348
A2 :												
iog r (Whole M	0.76992	1	0 74769	0 64224	0.12005	0 6116	0.252	0.76657	0 50625	0 28651	0 57917	0.56092
V2 ·	0.70882	1	0.74708	0.04324	0.12095	0.0440	-0.232	0.70037	-0.39023	-0.28034	0.57817	0.50085
AJ.												
Definentiat												
(What a b	0.05096	0 7 47 69	1	0.02046	0 40 425	0.07404	0.00020	0.05922	0.04654	0 20550	0.06122	0 10727
Whole W	0.95080	0.74708	1	0.82840	0.49423	0.97494	0.00038	0.93852	-0.94034	-0.58558	0.90123	-0.10727
A4 : Noushana												
Number of	0.90924	0 6 4 2 2 4	0.92946	1	0.59524	0.97224	0 42042	0.86201	0.9716	0 12422	0.97419	0.06120
(whole iv	0.89834	0.64324	0.82840	1	0.58524	0.8/334	-0.43943	0.80201	-0.8/10	0.12422	0.87418	-0.06129
AD : Noorthan a												
Number of	0 64046	0.12005	0.40425	0.59524		0.65690	0.00000	0.02005	0.72909	0.21727	0 64699	0 5 4 2 0 2
(whole N	0.64046	0.12095	0.49425	0.58524	1	0.65689	-0.06998	0.63685	-0.73808	0.21/2/	0.64688	-0.54393
A0 : M-11												
Molecular												
Mass	0.06714	0 6116	0.07404	0.07224	0.65.600		0.01005	0.0671	0.00255	0 00000	0.00255	0.05007
(whole N	0.96714	0.6446	0.97494	0.8/334	0.65689	1	0.01235	0.9671	-0.99355	-0.23338	0.99355	-0.25807
A/: T-t-1												
Total												
Cipole	0 11272	0.252	0.00029	0 420 42	0.00000	0.01225	1	0.02405	0.0020	0.7(220	0.01/201	0.45110
(whole iv	-0.112/3	-0.252	0.06038	-0.43943	-0.06998	0.01235	1	-0.03495	0.0039	-0.70328	0.016201	-0.45118
A8 : M-11												
Surface A												
Surface A	0.00000	0.76657	0.05922	0.96201	0.02005	0.0671	0.02405	1	0.06126	0.25210	0.02286	0.092924
(whole iv	0.99606	0.76657	0.95852	0.86201	0.03085	0.9671	-0.03495	1	-0.90130	-0.25319	0.95580	-0.082824
A9. VAMD												
V AMP												
Whole M	0.06229	0 50625	0.04654	0.8716	0.72909	0.00255	0.0020	0.06126	1	0 17208	0.08627	0.21052
V10	-0.90228	-0.39023	-0.94034	-0.8710	-0.75608	-0.99555	0.0039	-0.90150	1	0.17508	-0.98027	0.51055
VAMD												
VANI												
(What a N	0 17710	0.29654	0.20550	0 12422	0.01707	0 22220	0.76229	0.25210	0.17209	1	0.21005	0.022050
(whole N	-0.17718	-0.28054	-0.38558	0.12422	0.21727	-0.23338	-0.70328	-0.25319	0.17308	1	-0.21005	-0.032939
MAMD												
V AIVIP												
Whole N	0.02721	0 57917	0.06122	0.97419	0 64699	0.00255	0.0163	0.02286	0.09627	0.21005		0.2261
v ·	0.93721	0.57817	0.90123	0.87418	0.04088	0.99333	0.0162	0.93386	-0.98627	-0.21005	1	-0.3261
limnon	0.07055	0.56092	0 10727	0.06120	0.54202	0.25907	0.45119	0.08282	0.21052	0.02206	0.2261	
immonen	q -0.07055	0.50083	-0.10727	-0.00129	-0.54595	-0.25807	-0.45118	-0.08282	0.51055	-0.05296	-0.3261	1

Figure 2.Showing the correlation between VAMP total energy and limnonene synthetase inhibitor activity cluster 1

Figure 3.Showing the correlation between log P and limnonene synthetase inhibitor activity cluster 1.

Table 4. Correlation between eleven Physical Parameters andLimonene Synthetase Inhibitor Activity for Cluster 2

	X1 :	X2 :	X3 :	X4 :	X5 :	X6 :	X7 :	X8 :	X9 :	X10:	X11 :	Y :
	Molecular	log P	Molecular	Number o	Number o	Molecular	Total	Molecular	VAMP	VAMP	VAMP	limnonene activity
	Volume	(Whole M	Refractivi	(Whole M	(Whole M	Mass	Lipole	Surface A	Total Ene	Ionization	Nuclear Energy	-
	(Whole M	Iolecule)	(Whole M	lolecule)		(Whole M	(Whole M	(Whole M	(Whole M	(Whole M	(Whole Molecule)
X1 :												
Molecular												
Volume												
(Whole M	1	0.56661	0.98302	-0.4042	0.25546	0.98489	0.06667	0.98158	0.02254	-0.41886	0.19514	0.29682
X2 :												
log P												
(Whole M	0.56661	1	0.64598	-0.05125	-0.15657	0.49011	0.0283	0.64166	0.15942	-0.42633	-0.022188	0.6695
X3 :												
Molecular												
Refractivi		0.44800					0.40400		0.00044			
(Whole M	0.98302	0.64598	1	-0.40779	0.15764	0.9705	0.10639	0.97422	-0.02864	-0.37107	0.24832	0.34641
X4 :												
Number o	0 40 42	0.05125	0 40770	1	0.27907	0.28002	0.669.47	0.20075	0 40218	0.2579	0.570/0	0.41820
(whole M	-0.4042	-0.05125	-0.40779	1	0.37897	-0.38003	0.00847	-0.28875	0.40318	-0.2578	-0.57969	0.41839
AJ : Number e												
Whole M	0.25546	0 15657	0 15764	0 27807	1	0.25949	0 22220	0 2117	0 17128	0 22062	0 20065	0 27275
X6 ·	0.25540	-0.13037	0.13704	0.37897	1	0.55848	0.32329	0.3117	0.17128	-0.55002	-0.20005	0.37273
Molecular												
Mass												
(Whole M	0 98489	0.49011	0.9705	-0 38003	0 35848	1	0 12472	0 97141	-0.03352	-0 37177	0 23944	0 31243
X7 :					0.000.0		01021112				01-07 11	0.0.0.10
Total												
Lipole												
(Whole M	0.06667	0.0283	0.10639	0.66847	0.32329	0.12472	1	0.10085	0.42321	-0.41727	-0.46062	0.20128
X8 :												
Molecular												
Surface A												
(Whole M	0.98158	0.64166	0.97422	-0.28875	0.3117	0.97141	0.10085	1	-0.02111	-0.39375	0.21616	0.4709
X9 :												
VAMP												
Total Ene												
(Whole M	0.02254	0.15942	-0.02864	0.40318	0.17128	-0.03352	0.42321	-0.02111	1	-0.90571	-0.96719	-0.10783
X10 :												
VAMP												
Ionization												
(Whole M	-0.41886	-0.42633	-0.37107	-0.2578	-0.33062	-0.37177	-0.41727	-0.39375	-0.90571	1	0.79719	-0.13865
INUCIEAR E	0.10514	0.02210	0.24922	0.57050	0.20075	0.22044	0.46062	0.21616	0.06710	0.70710		0.00245
(whole M	0.19514	-0.02219	0.24832	-0.57969	-0.20065	0.23944	-0.46062	0.21016	-0.90719	0.79719	1	0.09245
1 : 1	0.20692	0 6605	0.24641	0.41920	0 27275	0.21242	0.20129	0.4700	0 10792	0.12965	0.00245	
umnonene	0.29682	0.6695	0.34641	0.41839	0.37275	0.31243	0.20128	0.4709	-0.10783	-0.13865	0.09245	1

http://www.ijmr.net.in email id- irjmss@gmail.com Page 672

Fig 4 showing the correlation between log P and limnonene synthetase inhibitor activity cluster 2.

CONCLUSION

In their investigation 88 chemical compounds known to be biologically active are taken from literatures for QSAR study. Using cheminformatics tools both specific biological activity and physico chemical parameters are quantified. Using the quantified values multiple regression analysis was performed. This analysis revealed several interesting information's that could be put into knowledge based drug discovery.

Three biological properties were recognized and quantified in these 88 compounds. Some of them showed strong phosphatase inhibition activity, and others showed limonene synthestase inhibition. Some of the compounds possessed all the three activities together, though in varying extends.

A strong positive correlation between log p value and some what weak relation with molecular total energy and limonene synthestase activity. Most conclusive results are obtained only with compared showing pulmonary hypertension activity with certain parameters. It is surprising that a hydrogen donor number increase positively correlated well with pulmonary hypertension activity in ane cluster, while it is exactly opposite in another cluster.

It is known that both 11 donors and 11 acceptors should be well within 5 numbers for a good drug. It is one of the 4 major canons of lipinskeys rule of 5.What is interesting here is in one set of compounds hydrogen donor number has strong relation while it is hydrogen acceptor is another. As the correlation, value is very close to 1 it is to be considered seriously. There is not an iota of doubt that manipulating such characters would bring about highly potent lead molecule.

REFERENCES

1.Lewell, X.Q. et al.; RECAP \ddot{i}_{ℓ} ^{1/2} retro synthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J. Chem. Inf. Comput. Sci. 1998, 38, 511-522

2.Schneider, G. et al.; De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J. Comput.-Aided Mol. Des. 2000, 14, 487-494

3.A New Atom-Additive Method for Calculating Partition Coefficients Renxiao Wang, Ying Fu, and Luhua Lai* J. Chem. Inf. Comput. Sci. 1997, 37, 615-621

4.All-Orientation Search and All-Placement Search in Comparative Molecular Field Analysis.Wang, R.; Gao, Y.; Liu, L.; Lai, L. J. Mol. Modeling, 1998, 4, 276-283.

5.A New Empirical Method for Structure-Based Estimation of Binding Affinities Wang, R.; Liu, L.; Lai, L.; Tang, Y. J.Mol.Modeling, 1998, 4, 379-394.

6.Calculating Partition Coefficients of Peptides by the Addition Method Peng Tao, Renxiao Wang, and Luhua Lai. J. Mol. Model. 1999, 5, 189-195.

7. L. B. Kier and L. H. Hall, Quantitative Information Analysis: The New Center of Gravity in Medicinal Chemistry, Med. Chem. Res. 7, 335-339 (1997).

8.L. B. Kier, Molecular Orbital Theory in Drug Research, Academic Press, New York (1971).

9. L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York (1976).

10. L. B.Kier and L. H. Hall, Molecular Connectivity in Structure-Activity Analysis, John Wiley, New York (1986).

11. L. B. Kier and L. H. Hall, Molecular Structure Description: The Electrotopological State, Academic Press (1999).